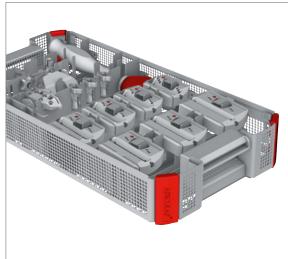


THERAPIEN

AESCULAP® e.motion® Pro SYSTEM

KNIEENDOPROTHESEN OPERATIONSTECHNIK MIT IQ INSTRUMENTEN

1 | EINFÜHRUNG



Das IQ e.motion® Instrumentarium (IQ = Intuitive and Quick) wurde entwickelt, um durch verbesserte Ergonomie und operative Leistungsfähigkeit den Arbeitsablauf nicht nur für den Chirurgen, sondern für das gesamte Team zu erleichtern. Das System bietet zahlreiche Optionen für unterschiedliche Implantationsphilosophien, die jedem Chirurgen die Anwendung seiner bevorzugten Operationstechnik gestatten.

- Präzise und weniger Instrumente,
- Schnellverschlüsse und
- Farbkodierung

sind nur einige der Aspekte der Arbeitserleichterung, die dieses System im OP bietet.

IQ – INTUITIVE & QUICK WENIGER IST MEHR

Die Instrumente sowie auch die Instrumentenlagerungen sind mit einer Farbmarkierung versehen um die Instrumentation und Organisation während des gesamten Workflows zu erleichtern:

- rot = Femur
- blau = Tibia
- gelb = allgemeine Instrumente
- grau = Patella

Die IQ e.motion® Instrumente werden in validierten und bewährten Waschtrays aufbewahrt. Mit diesen Trays lassen sich die Instrumente nicht nur zuverlässig und geschützt aufbewahren, sie vereinfachen auch spürbar den Wiederaufbereitungsprozess für die ZSVA (Zentrale Sterilgutversorgungsabteilung), da die Instrumente während der Reinigung im Tray verbleiben können. Diese zeitsparende Lösung bietet einen wirtschaftlichen Vorteil und beseitigt mögliche Fehlerquellen, da ein erneutes Packen der Sets in der ZSVA nicht mehr notwendig ist (1).

Aesculap Reset®

Aesculap Reset® ist eine intelligente Optimierung der Aesculap OrthoTray® Lagerungssysteme. Alle größenspezifischen Instrumente sind so gepackt, dass nur das vom Operateur gewählte Größensieb im OP geöffnet wird. Dadurch reduziert sich das Instrumenten- und Siebkorbvolumen im gesamten Instrumentenkreislauf um über 50 % (1). Als größenspezifisches Lagerungs- und Waschsystem erleichtert das Aesculap OrthoTray® die Arbeit aller Beteiligten im gesamten Prozess.

HINWEIS

Dieses Waschsystem ist nur für reinigungsvalidierte Instrumente von AESCULAP® geeignet. Komplexe Instrumente wie z. B. Schnittführungen oder Instrumente, die während des Eingriffs in den IM-Kanal eingeführt werden, wie Bohrer und Fräser, erfordern eine manuelle Vorreinigung gemäß Aufbereitungsanforderungen.

2 | INHALT

1 EINFÜHRUNG	2
2 INHALT	4
3 INDIKATIONEN UND	6
PATIENTENAUSWAHL	
4 PRÄOPERATIVE PLANUNG	7
5 ZUGANG	8
Medial-parapatellare Arthrotomie	
Midvastus-Arthrotomie	
Subvastus-Arthrotomie	
Komplette Freilegung	
6 MONTAGEANLEITUNG UND	10
INSTRUMENTENHANDHABUNG	
7 ZUSAMMENFASSUNG OP-ABLAUF	16
8 TIBIAPRÄPARATION	20
8.1 Extramedulläre Ausrichtung	
8.2 Intramedulläre Ausrichtung	
8.3 Tibiaresektion	
8.4 Tibiaschnitte für Tibia-	
augmentation	
8.5 Tibiaflügelpräparation	
8.6 Tibiaschaftpräparation	

9	FEMURPRÄPARATION	33
	9.1 Intramedulläre Femur-	
	ausrichtung	
	9.2 Distale Resektion	
	9.3 AP-Größenfestlegung und	
	Rotation des Femurs	
	9.4 4-in-1-Resektion	
	9.5 PS Boxpräparation	
10	SPALTAUSGLEICH	41
	10.1 Tibia-First-Messung	
	mit Distanzblöcken	
	10.2 Optional Tibia-First-Messung	
	mit Distraktor	
	10.3 Femur-First-Messung	
	mit Spacern	
	10.4 Strategien	
11	PATELLAPRÄPARATION	46
12	PROBEREPOSITION	48
13	IMPLANTATION DER ENDGÜLTIGEN	50
	KOMPONENTEN	
14	ZEMENTIERTECHNIK	54
15	INSTRUMENTE	56
16	OPTIONALE INSTRUMENTE	66
17	SÄGEBLÄTTER	68
18	IMPLANTATMABE	69
19	LEIHSYSTEME	73
20	IMPLANTATMATRIX	75
21	LITERATUR	82

AESCULAP® e.motion® FAMILIE

3 | INDIKATIONEN UND PATIENTENAUSWAHL

e.motion® FP

e.motion® UC Pro zementiert/Plasmapore® µ-CaP e.motion® PS Pro

Das e.motion® Pro System ist für Patienten indiziert, die einen primären oder einen Revisionseingriff benötigen. Das Prinzip von e.motion® Pro basiert auf der hohen Kongruenz zwischen den femoralen Kondylen und der beweglichen Meniskuskomponente und erfordert daher stabile Seitenbänder, mediolaterale Symmetrie und einen ausgelichenen Flexions- und Extensionsspalt.

Das e.motion® UC Pro System ist ein ultrakongruentes hinteres Kreuzband erhaltendes System. Die Tibia hat einen Sicherheitsstopp, der eine Rotation von +/- 30° erlaubt. Die e.motion® PS Pro Prothese ist ein posterior stabilisierendes System, bei dem das hintere Kreuzband reseziert wird. Das knochensparende Boxdesign und die niedrigen Abriebwerte erlauben eine PS Implantation, bei der keine Kompromisse in Bezug auf Abrieb gemacht werden müssen (2). Eine weitere Besonderheit stellt die Advanced Surface Oberfläche

mit ihren hervorragenden Gleit- und Abriebeigenschaften dar. Die seit 2007 erfolgreich eingesetzte Oberflächenvergütung Advanced Surface, mit der sieben Schichten-Architektur, bietet mehrere Vorteile. Die keramische, sehr harte Oberfläche, mit den hervorragenden tribologischen Eigenschaften, reduziert den Abrieb in vitro (2). Gleichzeitig sind fünf Zwischenschichten zur Verhinderung des Austretens von Metallionen aufgebracht.

Weitere Informationen zu Kontraindikationen finden Sie in der Gebrauchsanleitung TA016100.

HINWEIS

Zementfreie e.motion® Implantate in AS Version sind auf Anfrage patientenspezifisch erhältlich.

4 | PRÄOPERATIVE PLANUNG

Ganzbeinstandaufnahme zur mechanischen Achsenplanung

Es empfiehlt sich, jede Knieendoprothese präoperativ sorgfältig anhand von Röntgenaufnahmen zu planen, um die folgenden Parameter präzise zu bestimmen:

- Varus-/Valgus-Fehlstellung
- Winkel zwischen der anatomischen und mechanischen Femurachse
- Eintrittspunkt(e) der intramedullären Ausrichtungsstäbe (manuelle IM-Technik)
- Gelenklinienebene
- Femurresektionshöhen
- Tibiaresektionshöhen
- Größenfestlegung der Komponenten

- Implantatpositionierung
- Potentielle Bereiche mit Knochenverlusten und Lage von Osteophyten
- Aufnahme in A/P-Projektion: Knie gestreckt, über der distalen Patella zentriert
- Kniegelenk in lateraler Projektion: Knie 30° gebeugt, über der distalen Patella zentriert
- Aufnahme des gesamten Beins (von der Hüfte bis zum Knöchel) im Einbeinstand
- Patella-Tangentialaufnahme (Merchant View),
 Knie 30° gebeugt

Der Winkel zwischen der mechanischen und der anatomischen Femurachse wird mit der Kombinationsschablone für Achsenmessungen gemessen.

Die Mitte des Gelenks, die Gelenklinie und die mechanische Femurachse können bestimmt werden.

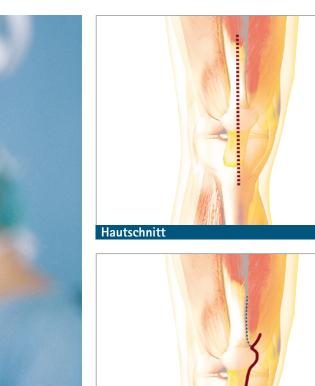
Zur Festlegung der Tibiaresektion wird die Schablone mit den Darstellungen der tibialen Komponenten über das Röntgenbild gelegt und darauf ausgerichtet.

Die Resektionshöhe ist in einer Abstufung von 10-24 mm angegeben. Ein vollständiger Satz Röntgenschablonen kann zur präoperativen Bestimmung der angemessenen Implantatgrößen bestellt werden. Auf dem Röntgenbild sollte auf Osteophyten geachtet werden. Deren Entfernung verbessert die Beweglichkeit des Gelenks.

Das e.motion® Pro Kniesystem bietet einen vollständigen Satz Röntgenschablonen in unterschiedlichen Maßstäben (PS Pro und UC Pro Tibia 1,1:1 NS416 und 1,15:1 NS417), (UC Pro Femur 1,1:1 : NE398 und 1,15:1 NE399).

Die Ergebnisse der präoperativen Planung müssen in der Patientenakte dokumentiert werden und während des Operationsverfahrens zur Referenz verfügbar sein.

5 ZUGANG



Die IQ Instrumente des e.motion® Pro Kniesystems sind zur Verwendung mit oder ohne OrthoPilot®-Navigation sowohl für konventionelle als auch für weniger invasive Zugänge zum Kniegelenk entwickelt worden.

Die anfängliche Hautinzision ist ein gerader mittiger oder etwas schräger parapatellarer Hautschnitt, der 2 bis 4 cm proximal vom superioren Pol der Patella beginnt und sich distal bis zum medialen Aspekt des tibialen Tuberkels erstreckt. Der Chirurg muss für jeden Patienten gesondert entscheiden, wie lang der Einschnitt sein sollte, um einen angemessenen Überblick über die Knieanatomie zu gestatten. Ein parapatellarer Hautschnitt erleichtert dem Patienten nach der Operation das Knien.

Die Schnittlänge liegt allgemein zwischen 8 und 14 cm bei einer symmetrischen Ausdehnung ober- und unterhalb der Gelenklinie. In Abhängigkeit von Anatomie, Weichgewebe und Hautspannung des Patienten kann eine Verlängerung des Hauteinschnittes während der Operation notwendig werden.

Drei grundlegende Arten von Arthrotomien werden zur Freilegung des Gelenks empfohlen: Medial-parapatellar, Midvastus oder Subvastus.

Medial-parapatellare Arthrotomie

Die Arthrotomie wird bei gebeugtem oder gestrecktem Knie ausgeführt, beginnend proximal vom oberen Patellapol, wobei die Sehne des M. rectus femoris längs gespalten wird. Die Arthrotomie wird distal um den medialen Aspekt der Patella fortgesetzt und endet medial der Tuberositas tibiae (3).

Midvastus-Arthrotomie

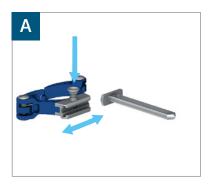
Die Arthrotomie wird bei gebeugtem Knie durchgeführt, beginnend mit einer Spaltung der Fasern des M. vastus medialis obliquus (VMO); sie wird distal um den medialen Aspekt der Patella fortgesetzt und endet medial der Tuberositas tibiae (3).

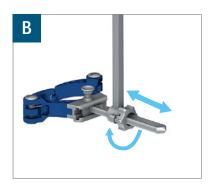
Subvastus-Arthrotomie

Die Arthrotomie wird bei gebeugtem Knie durchgeführt, beginnend mit einem 4 bis 6 cm langen Einschnitt der Faszie an der unteren Grenze des Vastus medialis obliquus. Sie wird horizontal zum medialen Aspekt der Patella fortgesetzt und endet distal medial der Tuberositas tibiae (3).

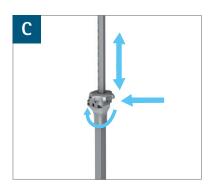
Komplette Freilegung

Eine Fettpolsterexzision kann optional durchgeführt werden, um die Freilegung zu erleichtern und die Beweglichkeit der Patella zu erhöhen. Führen Sie jetzt die notwendige mediale Ablösung durch, welche der Verformung entspricht. Die Patella kann dann evertiert oder lateral subluxiert werden.


6 | MONTAGEANLEITUNG UND INSTRUMENTENHANDHABUNG



Α	EXTRAMEDULLÄRE	11
	TIBIAAUSRICHTUNG	
В	INTRAMEDULLÄRE	12
	TIBIAAUSRICHTUNG	
С	INTRAMEDULLÄRE	12
	FEMURAUSRICHTUNG	
D	AP- UND ROTATIONSAUSRICHT-	13
	BLOCK FÜR DAS FEMUR	
Е	TIBIALER / DISTALER SÄGEBLOCK	15

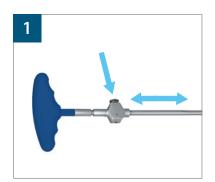

A | EXTRAMEDULLÄRE TIBIAAUSRICHTUNG

- Drücken Sie auf den oberen Knopf der bimalleolären Klammer.
- Führen Sie die Aufnahme für die bimalleoläre Klammer in die Nut ein
- Nachdem die Neutralposition erreicht worden ist, lassen Sie den Knopf los.

- Drehen Sie das Rad des tibialen Ausrichtungshandgriffs in die offene Position, woraufhin "OP-EN" angezeigt wird.
- Stecken Sie den Griff auf die Aufnahme für die bimalleoläre Klammer.
- Stellen Sie die Neutralposition ein.

- Drücken Sie auf das Griffstellrad, um den Sperrmechanismus freizugeben.
- Stecken Sie den Aufnahmestab für den Sägeblock in den Griff.
- Nachdem Sie die gewünschte Höhe erreicht haben, lassen Sie das Rad los.
- Sie können die Höhe durch Drehen des Rads feineinstellen.

- Platzieren Sie den Aufnahmestab in einem der Verbindungslöcher des Tibia-Sägeblocks.
- Stellen Sie die Vorrichtung mittels der Flügelschraube fest.

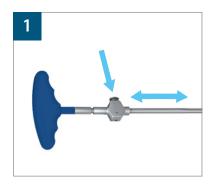


- Die proximale Fixierung wird durch die proximale Öffnung des Aufnahmestabs geschoben.
- Drehen Sie die Lasche in eine horizontale Position, um die Vorrichtung zu sichern.

- Der Verbindungsadapter des Schnitthöhentasters wird in eines der Verbindungslöcher des Tibia-Sägeblocks eingesteckt.
- Die Sicherung der Verbindung erfolgt durch Sperren der Flügelschraube am Höhentaster.
- Die Resektionshöhe wird auf die gewünschte Knochenschnittebene eingestellt.
- Der Höhentaster kann über der proximalen Fixierung platziert werden.

B | INTRAMEDULLÄRE TIBIAAUSRICHTUNG

- Drücken Sie auf den Knopf am T-Griff, um den Sperrmechanismus zu entsperren.
- Koppeln Sie den T-Griff mit dem IM-Stab.
- Lassen Sie den Knopf los, um die Vorrichtung zu sperren.

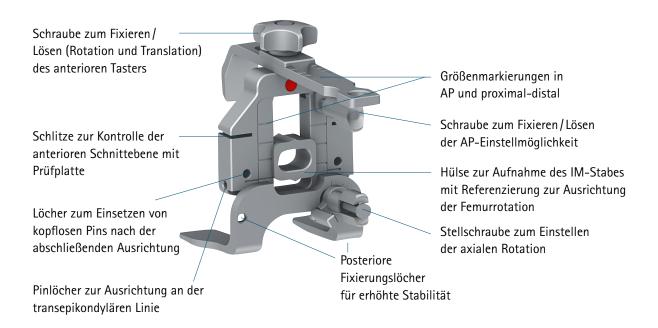


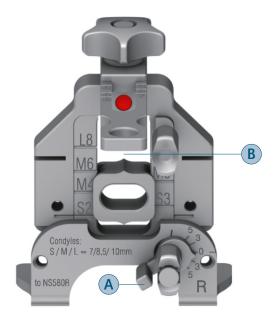
- Wählen Sie die IM-Ausrichtungshülse entsprechend der gewünschten posterioren Neigungsresektion der Tibia. (Vorgabe ist die 0°-Hülse. Hülsen mit 3°, 5° und 7° posteriorer Neigung sind zusätzlich verfügbar.)
- Verbinden Sie die H
 ülse mit dem IM-Ausrichtsystem.

- Befestigen Sie die Vorrichtung am Ausrichtungsstab.
- Verbinden Sie das Ausrichtsystem mit dem tibialen und distalen
 Sägeblock in einem seiner Verbindungslöcher.
- Sichern Sie die Verbindung durch Sperren der Flügelschraube.

C | INTRAMEDULLÄRE FEMURAUSRICHTUNG

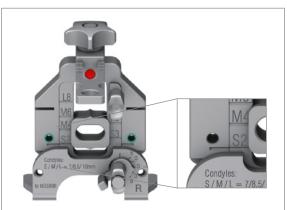
- Drücken Sie auf den Knopf am T-Griff, um den Sperrmechanismus zu entsperren.
- Koppeln Sie den T-Griff mit dem IM-Stab.
- Lassen Sie den Knopf los, um die Vorrichtung zu sperren.



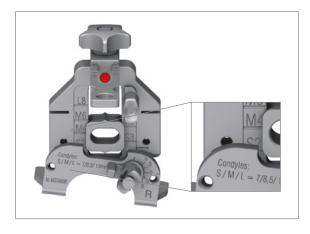

- Wählen Sie die IM-Ausrichtungshülse entsprechend der gewünschten Valgusausrichtung (Standard: 5°, 6° oder 7°, 8° und 9° sind optional verfügbar).
- Für ein rechtes Knie muss die IM-Ausrichtungshülse so eingeschoben werden, dass das R neben dem schwarzen Punkt ist. Für ein linkes Knie entsprechend das L.
- Verbinden Sie die H
 ülse mit dem IM-Ausrichtsystem.
- Bringen Sie eine distale Femurkontaktplatte an.

- Befestigen Sie die Vorrichtung am Ausrichtungsstab.
- Verbinden Sie das Ausrichtsystem mit dem tibialen und distalen Sägeblock im mittigen Verbindungsloch.
- Sichern Sie die Verbindung durch Sperren der Flügelschraube.

D | AP- UND ROTATIONSAUSRICHTBLOCK FÜR DAS FEMUR



- Option 1: Die Rotation wird vor dem Platzieren des Blocks auf einen gewünschten Wert vorfixiert. Die Rotation kann durch Verdrehen der hinteren Schraube feineingestellt werden (s. A).
- Option 2: Die Rotation ist freigängig und der Block wird im Kontakt mit dem distalen Femur und den posterioren Kondylen platziert. Die Rotation kann durch Verdrehen der unteren Schraube fein eingestellt werden, wobei die Ausrichtung des AP-Fensters (s. B) auf die Femur-AP-Ebene überprüft wird (Whiteside-Linie).
- Aufgrund des festgelegten Abstands zwischen den Pinlöchern und dem anterioren Kortextasters können die platzierten Pins für eine beliebige, vom Operateur gewählte Femurgröße verwendet werden. Eine Größenänderung des Femurs (größer oder kleiner) erfolgt lediglich durch Wahl einer anderen 4-in-1-Sägeblockgröße bei Platzierung auf den gleichen Pins. Aufgrund der anterioren Referenz liegt die Änderung ausschließlich in der dorsalen Resektionshöhe.


D | AP- UND ROTATIONSAUSRICHTBLOCK FÜR DAS FEMUR

- Der zu palpierende, anteriore Punkt liegt auf dem lateralen anterioren Kortex, wodurch das Risiko eines anterioren Notchings verringert wird.
- Falls die Palpation in der Mitte des anterioren Femurs erfolgt, ist das "Grand Piano Sign" größer, wodurch eine größere Kontaktfläche sichergestellt ist.
- Der Taster kann in kaudo-kranialer Richtung eingestellt werden, um eine Kongruenz zwischen der AP- und der proximal-distalen Größenfestlegung zu erzielen, die anhand der Skala am oberen Teil des Tasters bestimmt wird.

- Wenn nach der Definition der korrekten axialen Rotation des Blocks eine exakte Femurgröße gemessen wurde (wie im links gezeigten Beispiel), befestigen Sie die AP-Einstellmöglichkeit durch Festziehen der entsprechenden Schraube und platzieren Sie zwei kopflose Pins in den Pinlöchern.
- Entfernen Sie den Ausrichtblock durch Lösen der Schrauben und Entfernen der posterioren Fixierpins (falls verwendet).

- Wenn nach der Definition der korrekten axialen Rotation des Blocks eine Größe gemessen wurde, die zwischen zwei exakten Größen liegt (wie im links gezeigten Beispiel), befestigen Sie die AP-Einstellmöglichkeit durch Festziehen der entsprechenden Schraube und platzieren Sie zwei kopflose Pins in den Pinlöchern.
- Entfernen Sie den Ausrichtblock durch Lösen der Schrauben und Entfernen der posterioren Fixierpins (falls verwendet).
- Wählen Sie in diesem Fall die nächste darüber- bzw. darunterliegende Größe unter Berücksichtigung der Bewertung der medio-lateralen Abmessung und der Situation des Flexions-/ Extensions-Spalts. Eine kleinere Größe wird die Flexionsspalten vergrößern, während eine größere Größe die Flexionsspalten verkleinern wird.

HINWEIS

Die posteriore und distale Dicke des e.motion® Pro Femurs variiert je nach den folgenden 3 Größengruppen: S = Größe 2, 3 = 7 mm; M = Größe 4, 5, 6 = 8,5 mm und L = Größe 7, 8 = 10 mm. Die Wahl der Größe kann sich daher auf den Extensionsspalt auswirken.

Distale oder tibiale Resektion mit Standardzugang

- Für die distale bzw. die tibiale Resektion mit Standardzugang verwenden Sie das mittige Verbindungsloch mit der "C"-Kennzeichnung (s. grünes Rechteck).
- Fixieren Sie den Sägeblock durch die entsprechend mit der "C"-Kennzeichnung versehenen Pinlöcher mit zwei kopflosen Pins (s. rote Kreise).
- Eine stärkere Fixierung wird mit einem oder zwei konvergierenden Pins in den mit den blauen Kreisen gekennzeichneten Löchern erreicht.

Tibiale Resektion des rechten Knies mit einem weniger invasiven Zugang

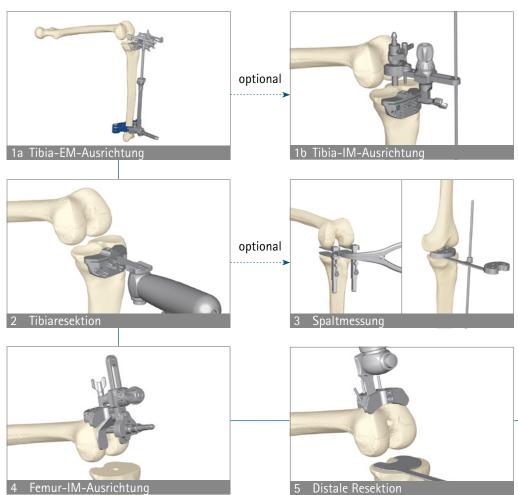
- Verwenden Sie in diesem Fall das mit der "R"-Kennzeichnung versehene Verbindungsloch (s. grünes Rechteck).
- Fixieren Sie den Sägeblock durch die entsprechend mit der "R"-Kennzeichnung versehenen Pinlöcher mit zwei kopflosen Pins (s. rote Kreise).
- Eine stärkere Fixierung wird mit einem konvergierenden Pin in dem mit dem blauen Kreis gekennzeichneten Loch erreicht.

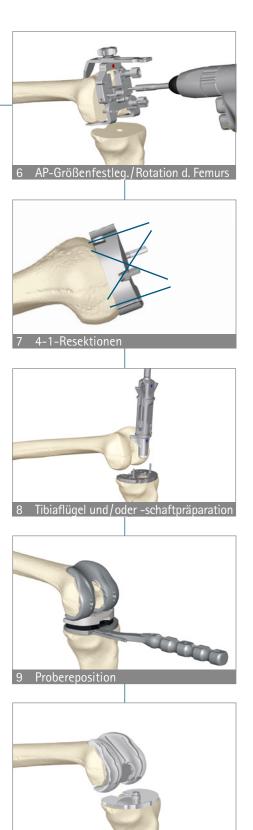
Tibiale Resektion des linken Knies mit einem weniger invasiven Zugang

- Verwenden Sie in diesem Fall das mit der "L"-Kennzeichnung versehene Verbindungsloch (s. grünes Rechteck).
- Fixieren Sie den Sägeblock durch die entsprechend mit der "L"-Kennzeichnung versehenen Pinlöcher mit zwei kopflosen Pins (s. rote Kreise).
- Eine stärkere Fixierung wird mit einem konvergierenden Pin in dem mit dem blauen Kreis gekennzeichneten Loch erreicht.

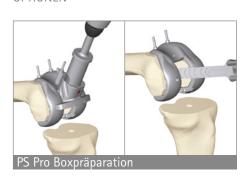
HINWEIS

Für einen minimal invasiven Zugang oder bei wenig Platz im Operationsfeld sind medialisierte Sägeblöcke optional erhältlich (siehe Kapitel 16 Optionale Instrumente).





7 | ZUSAMMENFASSUNG OP-ABLAUF - TIBIA-FIRST

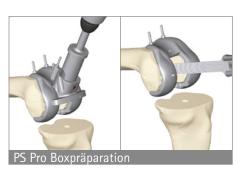


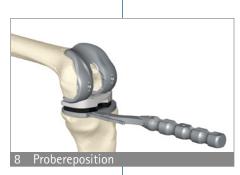
10 Endgültige Implantation

OPTIONEN


7 | ZUSAMMENFASSUNG OP-ABLAUF - FEMUR-FIRST






OPTIONEN

OPTIONEN

8 | TIBIAPRÄPARATION

8.1 Extramedulläre Ausrichtung

- Das EM-Ausrichtsystem wird bei gebeugtem Bein parallel zur Tibiaachse platziert. Dazu wird die 2/3 Fingerregel angewandt. Im oberen Drittel des Ausrichtsystems passen zwei Finger zwischen Tibia und Instrument im unteren Drittel drei Finger. Die zuvor in Neutralposition gestellte, bimalleoläre Klammer wird etwas oberhalb des Knöchelgelenks am Unterschenkel befestigt und am Sprunggelenk zentriert.
- Proximal wird das EM-Ausrichtsystem zuerst mit der proximalen Fixierung stabilisiert, wobei der längste Dorn im Bereich der Eminentia intercondylaris eingesetzt wird.
- Wenn die Rotation auf das mittlere Drittel der Tuberositas tibiae und auf den zweiten Strahl des Fußes eingestellt worden ist (oder entsprechend der individuellen Anatomie des Patienten, falls diese Orientierungspunkte nicht auf der mechanischen Achse der Tibia liegen), kann der zweite Dorn fixiert werden. Dieser bestimmt die endgültige Tibiarotation.

Bimalleoläre Klammer NS345R

Aufnahme für bimalleoläre Klammer NS344R

Tibia-Ausrichtsystem Handgriff NS342R

Aufnahmestab für Tibia-Sägeblock NS341R

Tibialer/Distaler Sägeblock NS334R


Varus-/Valgus-Ausrichtung

Drücken Sie auf den Knopf (s. A) an der bimalleolären Klammer und verschieben Sie das Ausrichtsystem medial oder lateral, um die Varus-/Valgus-Einstellung der proximalen Tibiaresektion zu ermöglichen. Der Abstand zwischen den mit dem Laser markierten Linien auf der Skala entspricht einer Abweichung von 1° bei einer Tibialänge von 40 cm.

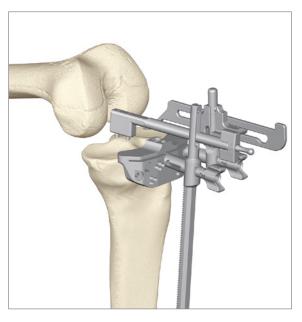
Ausrichtung der Tibianeigung

Wenn Sie das Fixierrad (s. B) am unteren Teil des Ausrichtsystems lösen (durch Drehen der Schraube auf OP-EN), kann das Ausrichtsystem anterior verschoben werden, um die dorsale Neigung der proximalen Tibiaresektion zu vergrößern. Der Abstand zwischen den mit dem Laser markierten Linien auf der Skala entspricht einer Abweichung von 1° bei einer Tibialänge von 40 cm.

HINWEIS

Im Tibiaplateau ist bereits ein dorsaler Slope von 3° integriert. Daher wird eine Tibiaresektion in 0° Slope empfohlen.

Proximale Fixierung NS343R


Tibia-Schnitthöhentaster NS347R

8 | TIBIAPRÄPARATION

8.1 Höheneinstellung (s. C)

Die Resektionshöhe wird bei der präoperativen Planung festgelegt. Das Ziel besteht in der möglichst vollständigen Entfernung möglicher Defekte auf der Tibiagelenkfläche um sicherzustellen, dass zur optimalen Unterstützung des Implantats auf intaktem Knochen ein Bett für das Tibiaplateau geschaffen wird.

- Der geplante Wert wird am Tibiahöhentaster eingestellt und anschließend im tibialen Sägeblock befestigt. Das extramedulläre Ausrichtsystem wird danach durch Drücken/Drehen des Einstellrades abgesenkt, bis der Taster den gewählten Punkt berührt (Drücken = grobe Justierung, Drehen = feine Justierung).
- Die Referenz zum gesunden Tibiaplateau ist hilfreich, um die Ebene der Gelenklinie festzustellen. Die Referenz zum tiefsten Punkt der abgenutzten Seite der Tibia unterstützt die Minimierung des Schnitts, indem nur 2 mm reseziert werden. Welcher Punkt als Referenz dient, richtet sich nach der präoperativen Planung und der Präferenz des Operateurs.

HINWEIS

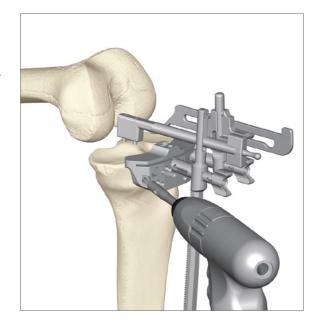
Das dünnste Tibiaimplantat hat eine Stärke von 10 mm (Metall + PE) und wächst in 2 mm Schritten.

Bimalleoläre Klammer NS345R

Aufnahme für bimalleoläre Klammer NS344R

Tibia-Ausrichtsystem Handgriff NS342R

Aufnahmestab für Tibia-Sägeblock NS341R



Tibialer/Distaler Sägeblock NS334R

Proximale Fixierung NS343R

 Der Schnittblock wird mit zwei kopflosen Pins in der Position "O" befestigt. Die +/- 2 mm Pinlöcher auf den Resektionsblöcken dienen dazu, die Resektionsebene bei Bedarf zu ändern.
 Um Verschiebungen während der Resektion zu vermeiden, werden zusätzliche Pins in konvergierenden Löchern entsprechend der Markierung platziert.

 Das EM-Tibiaausrichtsystem wird anschließend vom Tibia-Sägeblock getrennt, indem Sie die Flügelschraube gegen den Uhrzeigersinn drehen. Die proximale Fixierung kann durch Herausziehen des Dorns aus der Eminentia intercondylaris entfernt werden.

Tibia-Schnitthöhentaster NS347R

Kopflose Pins 63 mm NP583R

Pineindreher NP613R

Acculan 4 Bohr- und Fräsmaschine GA330 mit Bohraufsatz GB664R

8 | TIBIAPRÄPARATION

8.2 Intramedulläre Ausrichtung

 Der medulläre Kanal der Tibia wird anfänglich mit dem Bohrer
 (Ø 9 mm) eröffnet. Hierbei sollte der Chirurg sorgfältig auf die Bohrrichtung und den Eintrittspunkt achten, um eine kortikale Verletzung der posterioren Metaphyse zu vermeiden.

HINWEIS

Ein zu groß gewählter tibialer Slope kann bei Verwendung von (langen) Tibiaschäften zu einem anterioren kortikalen Konflikt führen.

Nachdem der Kanal gespült und sein Inhalt abgesaugt worden ist, wird der intramedulläre Stab mithilfe des T-Handgriffs in den vorbereiteten Kanal gesteckt. Nach der Entfernung des T-Griffs wird das intramedulläre Ausrichtsystem mit der gewählten posterioren Slopehülse (0° Standard, 3°, 5° oder 7° optional verfügbar) und dem Tibia-Sägeblock auf den IM-Stab aufgesteckt.

HINIMEIS

Für e.motion® Pro wird ein 0° Slope empfohlen.

Bohrer Ø 9 mm NE443R

T-Handgriff NE198R

IM-Ausrichtungsstab NS331R

IM-Ausrichtsystem NS332R

Tibialer/Distaler Sägeblock NS334R

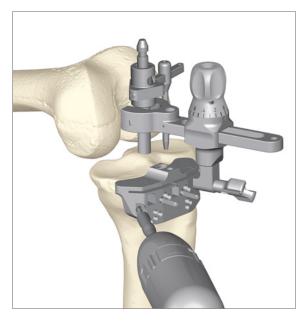
Tibia-Schnitthöhentaster für Ausrichtungshülsen NS847R

 Der Schnitthöhentaster wird auf den gewünschten Tibiareferenzpunkt gesetzt, um den 0-Ebenenschnitt zu definieren.
 Die Schnitthöhe wird dann eingestellt, indem das Stellrad auf die gewünschte Resektionshöhe in Millimetern eingestellt wird.

HINWEIS

Das dünnste Tibiaimplantat hat eine Stärke von 10 mm
(Metall + PE) und wächst in 2 mm Schritten.

• Die Ausrichtung des Sägeblocks kann mit dem Ausrichtungsstab überprüft werden.



Ausrichtungsstab, lang NP471R

Tibia Orientierungshülse 0°, 3°, 5°, 7° NS843R-NS846R

8 | TIBIAPRÄPARATION

- Der Sägeblock wird mit zwei kopflosen Pins in der Position "O" befestigt. Die +/- 2 mm Pinlöcher auf den Resektionsblöcken dienen dazu, die Resektionsebene bei Bedarf zu verändern.
 Um Verschiebungen während der Resektion zu vermeiden, werden zusätzliche Pins in konvergierenden Löchern platziert.
- Nach Entsperren des Sägeblocks aus dem Ausrichtsystem (die Flügelschraube wird gegen den Uhrzeigersinn gedreht) wird das IM-Tibiaausrichtsystem zusammen mit dem T-Griff entfernt.

8.3 Tibiaresektion

- Nachdem der Sägeblock positioniert und fixiert worden ist, wird die proximale Tibiaresektion mit einem 1,27 mm dicken oszillierenden Sägeblatt durchgeführt (siehe Hinweis).
- Nach erfolgter proximaler Tibiaresektion wird zuerst der Sägeblock und danach der resezierte Knochen entfernt.
 Anschließend muss eine sorgfältige Inspektion der peripheren Resektion vorgenommen werden, um eine gute knöcherne Auflage des Tibiaplateaus zu gewährleisten. Danach erfolgt die Entfernung von Meniskusresten und Osteophyten.

HINWEIS

Der Schutz der umgebenden Weichteile des Kniegelenks ist von größter Bedeutung! Zum Schutz der Weichteile wird die Verwendung von Hohmann-Retraktoren, Kollateralretraktoren und PCL-Retraktoren empfohlen.

IM-Ausrichtungsstab NS331R

IM-Ausrichtsystem NS332R

Tibia-Schnitthöhentaster für Ausrichtungshülsen NS847R

Tibialer/Distaler Sägeblock NS334R

Kopflose Pins 63 mm NP583R

Tibia-Ausrichtungshülse NS843R-NS846R

Acculan 4 Oszillierende Säge GA330

8.4 Tibiaschnitte für Tibiaaugmentation

 Für Defekte am Tibiaplateau bietet das e.motion® Pro Kniesystem
 4 mm, 8 mm und 12 mm hohe Tibiaaugmente für die laterale und mediale Seite.

Nach der Standardresektion wird der Tibia-Sägeblock entfernt. Entsprechend den verwendeten Pinlöchern beim Tibia-Sägeblock wird der Versetzblock über die zwei kopflosen Pins mit der Seite "C" oder "LR" am Knochen platziert (siehe Abbildung unten). Zwei zusätzliche kopflose Pins werden in der benötigten Resektionstiefe eingebracht. Nachdem der Versetzblock entfernt wurde, werden die oberen beiden Pins ausgedreht.

Tibialer/Distaler Sägeblock NS334R

Kopflose Pins 63 mm NP583R

Tibia-Versetzblock NQ1077R

Acculan 4 Bohr- und Fräsmaschine GA330 mit Bohraufsatz GB664R

Pineindreher NP613R

8 | TIBIAPRÄPARATION

Der Tibia-Sägeblock wird anschließend auf die zwei im Knochen verbleibenden Pins aufgesetzt. Der Tibia-Sägeblock wird mit zwei konvergierenden Pins fixiert. Anschließend kann die Resektion einseitig je nach gewählter Tibiaaugmenthöhe durchgeführt werden. Für den Sagittalschnitt wird eine Stichsäge verwendet.

HINWEIS

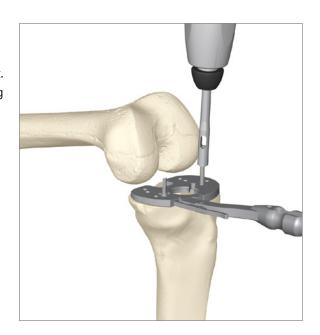
Für Messungen/Proben mit dem Probeimplantat wird das gewählte Probe-Tibiaaugment unter das Tibia-Probeplateau geklickt. Für die endgültige Implantation wird ein e.motion® Pro Tibiaplateau verwendet, an dem das passende Tibiaaugment mit zwei Schrauben befestigt wird.

Tibialer/Distaler Sägeblock NS334R

Kopflose Pins 63 mm NP583R

Acculan 4 Oszillierende Säge GA331

Schraubendreher NS410R


Tibia-Probeplateau NS732-NS738R

Probe-Tibiaplatte NS922-NS947

8.5 Tibiarotation und Tibiaflügelpräparation

- Die Größe der Tibia wird durch Auflegen der unterschiedlichen Tibia-Probeplateaugrößen auf die geschaffene Fläche bestimmt.
 Zusätzlich wird eine korrekte transversale Rotationsausrichtung des Probeplateaus eingestellt. Hierbei sollte auf gute Knochenabdeckung geachtet werden.
 - In das Tibiaplateau wird der Rotationszapfen eingedrückt. Damit kann der genaue Sitz und die Bewegung der Meniskuskomponente geprüft werden.
- Das gewählte Probeplateau wird bündig auf die Tibiaresektion gelegt und die Rotation wird mit Hilfe des durch den Halter hindurch platzierten EM-Stabs bestimmt. Anatomische Referenzen für die Rotationsausrichtung können z. B. das mediale Drittel der anterioren Tuberositas und der zweite Zehenstrahl sein. Der Chirurg sollte die Rotation in Bezug auf den Tuberkel berücksichtigen, um das Alignment des Extensormechanismus beizubehalten. Das Plateau wird mit den kurzen Kopfpins in den markierten Löchern fixiert.
- Eine weitere Option zur Rotationsbestimmung ist der Aufbau des Tibia- und Femur-Probeimplantats mit passender Probegleitfläche. Durch das Ausüben von Flexions-/Extensions-Bewegungen in Verbindung mit leichten Rotationsbelastungen wird die Meniskuskomponente eine natürliche Rotationsposition unter dem Probefemur finden. Das Tibiaplateau wird in die gleiche Position rotiert und unter Verwendung des elektrischen Kauters genau dort markiert, wo das Plateau eine mittige anteriore Lasermarkierung aufweist. Bewerten Sie die Stabilität des Extensormechanismus sorgfältig, bevor Sie diese "freischwebende" Ausrichtung des Probe-Tibiaplateaus akzeptieren.

Acculan 4 Bohr- und Fräsmaschine GA330 mit Bohraufsatz GB664R

Acculan 4 Oszillierende Säge GA330

Tibia-Probeplateau NS732R-NS738R

Tibia-Probeplateauhalter NQ378R

Kopfpins 30 mm NP585R

Pineindreher NP613R

Rotationszapfen NS739R

8 | TIBIAPRÄPARATION

- Der Tibiahandgriff wird entfernt. Der Führungsturm wird auf dem Tibiaplateau platziert und festgepinnt, wobei der posteriore Stift zuerst positioniert werden muss.
- Der Anschlagbohrer wird zuerst zur Vorbereitung des Knochens für den Flügelmeißel verwendet. Der Durchmesser beträgt für alle Tibiagrößen 14 mm.

■ Die Flügelschaftvorbereitung erfolgt mit dem Flügelmeißel an der entsprechenden Flügelmeißelhalterung. Beides wird durch den Führungsturm hindurch nach distal eingeschlagen. Der Einschläger hat keinen Anschlag, sondern weist nur eine optische Einkerbung auf, die bündig mit dem Führungsturm sein muss. Die Flügelmeißelhalterung wird durch Heranziehen der beiden Hebel am Handgriff gelöst und kann entfernt werden. Der Flügelmeißel verbleibt als Probeimplantat im Knochen. Bei Bedarf kann der Flügelmeißel mit dem Handgriff entfernt werden, um einen Probe-Verlängerungsschaft zu präparieren.

Tibia-Probeplateau NS 732-NS738R

Kopfpins 30 mm NP585R

Führung für Flügelmeißel NS793R

Bohrer mit Anschlag NS790R

Acculan 4 Bohr- und Fräsmaschine GA330 mit Bohraufsatz GB664R

8.6 Tibiaschaftpräparation

Bei schlechter Knochenqualität kann die primäre Fixierung durch den Einsatz einer Schaftverlängerung verstärkt werden. Je nach Philosophie des Chirurgen kann ein zementierter oder ein zementfreier Schaft gewählt werden.

Option 1: Präparation nach erfolgter Tibiaresektion. Für zementierte Schäfte empfohlen.

In diesem Fall erfolgt die Tibiapräparation wie in den zuvor beschriebenen Schritten (Absatz 8.1 bis 8.4). Im letzten Schritt wird anstelle des 14-mm-Standardbohrers ein langer Bohrer zur Vorbereitung des Markkanals für den zukünftigen Schaft verwendet.

Länge und Durchmesser dieses langen Bohrers müssen anhand der präoperativen Röntgenaufnahmen festgelegt werden.

Das Bohren erfolgt durch Einsätze für den Führungsturm, deren Durchmesser (12, 14 oder 16 mm) dem Probeschaftdurchmesser entsprechen. Der Bohrer weist zwei Lasermarkierungen auf, welche die richtige Tiefe für 52 mm bzw. 92 mm Schäfte anzeigen. Zur endgültigen Flügelpräparation wird der entsprechende Probetibiaschaft mit dem Flügelmeißel verbunden.

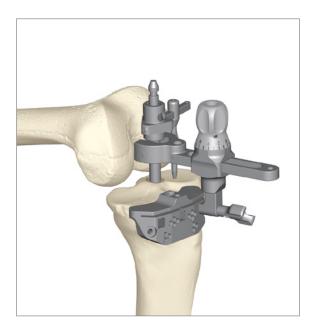
HINWEIS Die Implantatschäfte haben Durchmesser von 10, 12 oder 14 mm. Für zementierte Schäfte beträgt der Zementmantel 1 mm.

Verschlussschraube für Flügelmeißel/Probierkiel NS363R

Flügelmeißel / Probierkiel NS791R

Halter für Flügelmeißel NS520R

Tibiabohrhülse für zementierten Schaft NS727R-NS729R


Bohrer für zementierten Schaft NS376R-NS377R

Tibia Probeschaft NS384T-NS386T NS387T-NS389T

8 | TIBIAPRÄPARATION

INSTRUMENTE

Reibahle für zementfreien Schaft NE154R-NE158R

IM-Ausrichtungsstab NS331R

IM-Ausrichtsystem NS332R

Tibia-Schnitthöhentaster für Ausrichtungshülsen NS847R

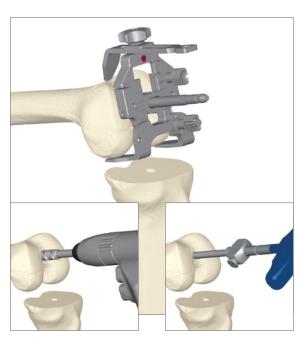
Tibialer/Distaler Sägeblock NS334R

0° Slopehülse NS843R

Option 2: Präparation mit Referenz zum Verlängerungsschaft. Für zementfreie Schäfte empfohlen.

In diesem Fall wird der medulläre Kanal der Tibia entsprechend der präoperativen Planung (Eintrittspunkt) mit dem Bohrer (Ø 9 mm) eröffnet. Die dünnste Reibahle wird dann mit dem T-Griff verbunden und so tief in den medullären Kanal der Tibia eingeführt, bis primäre Stabilität erzielt worden ist und eine Tiefenlasermarkierung die geschätzte Ebene der Tibiaresektion (92 od. 132 mm Schaft) erreicht hat. Falls nötig wird ein größerer Durchmesser verwendet, bis Stabilität erzielt wird.

HINWEIS


Die 132 mm Schäfte können aus Sicherheitsgründen nur mit den Reibahlen und nicht mit den Bohrern präpariert werden.

Nach der Entfernung des T-Griffs wird das intramedulläre Ausrichtsystem mit der 0°-Slopehülse (keine andere Slopehülse wird hier empfohlen) und der Schnittführung an der Reibahle befestigt. Der IM-Tibia-Schnitthöhentaster wird auf den tiefsten Punkt des Tibiaplateaus eingestellt, um den O-Ebenenschnitt zu definieren. Die Schnitthöhe wird danach durch Drehen des Einstellrads festgelegt. Die Ausrichtung des Sägeblocks kann mit dem EM-Ausrichtungsstab überprüft werden. Der Sägeblock wird mit zwei kopflosen Pins in der Position "O" befestigt. Um Verschiebungen während der Resektion zu vermeiden, werden zusätzliche Pins bei Bedarf in konvergierenden Löchern eingebracht. Nach dem Entsperren des Sägeblocks aus dem Ausrichtsystem wird das IM-Tibiaausrichtsystem in einem Schritt zusammen mit dem T-Griff entfernt. Der Chirurg muss bei der Ausrichtung der Tibia die Vorgabe durch den zementfreien Schaft berücksichtigen, welche möglicherweise nicht mit der mechanischen Achse der Tibia übereinstimmt. Nach der Tibiaresektion muss die endgültige Schaftlänge bestimmt werden. Die Länge für zementfreie Schäfte kann mit den Markierungen an der Reibahle bestimmt werden. Die Reibahle wird in die resezierte Tibia bis zur Markierung S, M oder L für die drei verfügbaren Längen eingesetzt. Um zu überprüfen, dass der endgültige Verlängerungsschaft einen guten Sitz hat, kann der Probeschaft eingesetzt werden.

9.1 Intramedulläre Femurausrichtung

- Der medulläre Kanal des Femurs wird entsprechend der präoperativen Planung (Eintrittspunkt) mit dem Bohrer (Ø 9 mm) geöffnet. Der Ausrichtstab wird mithilfe des T-Griffs in den intramedullären Kanal gesteckt. Danach wird der T-Griff entfernt und der Femurausrichtblock aufgesteckt.
- Zur Festlegung der richtigen distalen Schnitthöhe wird die Femurgröße oder Größengruppe ermittelt.
 Die endgültige Größe kann innerhalb der Größengruppe später gewählt werden.
- Die Femurgröße wird durch frontales Ablesen der markieten Größe von der Skala ermittelt, wobei die Stylusspitze am geplanten Austrittspunkt des Sägeblatts am anterioren lateralen Kortex positioniert werden muss, um anteriores Notching zu vermeiden.
- Zum Ausgleich des anatomischen Valguswinkels des Femurknochens wird die entsprechende Winkelhülse von 5°, 6° oder 7° (optional stehen auch 8° und 9° Winkelhülsen zur Verfügung) gemäß der präoperativen Planung im intramedullären Ausrichtsystem eingesetzt. Die distale Femurkontaktplatte und der Schnittblock werden mit dem System verbunden. Die Vorrichtung wird auf dem IM-Stab platziert, wobei sie mindestens einen distalen Kondylus berührt. Eine Lasermarkierung auf dem Ausrichtsystem zeigt an, wie die Winkelhülse aufgesteckt werden muss. Für ein rechtes Knie wird die Markierung "R" auf der Winkelhülse zur Lasermarkierung auf dem Ausrichtsystem gedreht, für ein linkes Knie die Markierung "L" auf die Seite der Lasermarkierung.
- Die geplante Höhe der distalen Resektion wird durch Drehen des Rads (s. A) eingestellt, bis die gewünschte Dicke mit der anterioren Lasermarkierung übereinstimmt. Die Standardresektion

entspricht der distalen Dicke des Implantates und ist 7 (Größengruppe S), 8,5 (Größengruppe M) oder 10 mm (Größengruppe L), abhängig von der jeweiligen Größengruppe.

Femurausrichtblock NS580R

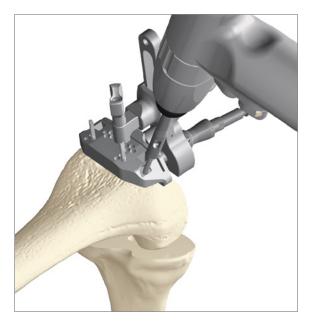
Bohrer Ø 9 mm NE443R

Acculan 4 Bohrund Fräsmaschine GA330 mit Bohraufsatz GB664R

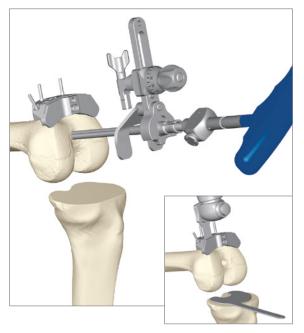
T-Handgriff NE198R

IM-Ausrichtsystem NS332R

Distale Femurkontaktplatte NS834R



Femurausrichtungshülse NS335R-NS337R


Tibialer/Distaler Sägeblock NS334R

9 | FEMURPRÄPARATION

9.2 Distale Resektion

 Der Schnittblock wird mit zwei kopflosen Pins in der Position "O" befestigt. Um Verschiebungen während der Resektion zu vermeiden, werden zusätzliche Pins in konvergierenden Löchern eingebracht.

- Das intramedulläre Ausrichtsystem wird mit dem T-Griff in einem Schritt vollständig entfernt, nachdem die Verbindung zur Schnittführung gelöst wurde.
- Die distale Femurresektion erfolgt durch Sägen mit einem 1,27 mm dicken, oszillierenden Sägeblatt. Vergewissern Sie sich, dass die Resektion vollständig abgeschlossen ist und keine verbleibenden Knochenstrukturen aus der Resektionsebene hervorstehen.
- Pins und Sägeblock werden entfernt.

HINWEIS

Bitte achten Sie immer äußerst sorgfältig auf die lateralen Strukturen, indem Sie diese bei Bedarf mit Hohmann-Retraktoren schützen.

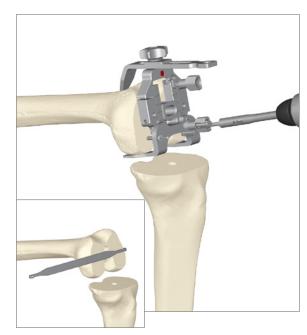
IM-Ausrichtungsstab NS331R

IM-Ausrichtsystem NS332R

Distale Femurkontaktplatte NS834R

Femurausrichtungshülse NS335R-NS337R

Tibialer/Distaler Sägeblock NS334R


Kopflose Pins 63 mm NP583R

Acculan 4 Bohr- und Fräsmaschine GA330 mit Bohraufsatz GB664R

9.3 AP-Größenfestlegung und Rotation des Femurs

- Der Femurausrichtblock wird bündig auf der resezierten, distalen Femurfläche platziert. Die posterioren Fußplatten müssen die posterioren Kondylen berühren. Der Femurausrichtblock wird mit zwei kopflosen Pins durch die posterioren Löcher am distalen Femur befestigt.
- Die ML-Größe des resezierten Femurs muss mit der ML-Größenbestimmungslehre für den Femur überprüft werden.

Die Femurgröße (AP) wird durch frontales Ablesen der markierten Größe von der Skala ermittelt. Der Taster muss dabei am geplanten Austrittspunkt des Sägeblatts am anterior-lateralen Kortex positioniert werden, um ein Notching zu vermeiden. Eine Skala auf der Oberfläche des Tasters zeigt die Länge des anterioren Femurschildes an. Die Position kann dann durch Festziehen der Schraube fixiert werden.

HINWEIS

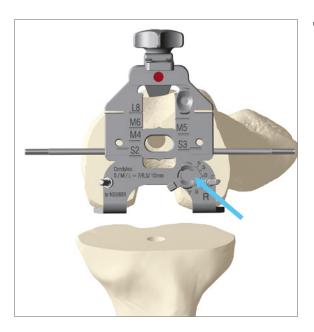
Um ein Notching an dem anterioren Femur zu vermeiden, stellen Sie vor der anterioren Referenzierung sicher, dass die Fixierschraube für den Taster nicht zu lose ist.

T-Handgriff NE198R

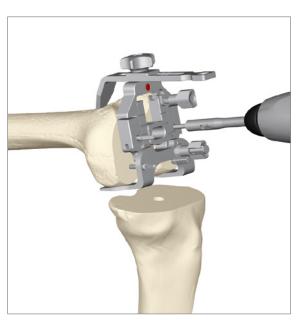
Tibiaschutzplatte NQ377R

Acculan 4 Bohr- und Fräsmaschine GA330 mit Bohraufsatz GB664R

ML-Femurgrößenlehre NS581R



Pineindreher NP613R



Kopflose Pins 63 mm NP583R

9 | FEMURPRÄPARATION

■ Die externe Rotation kann durch Bewegen des posterioren Hebelarms in die richtige Richtung gestellt werden. Für das rechte Knie drehen Sie im Uhrzeigersinn und für das linke Knie gegen den Uhrzeigersinn (gekennzeichnet mit Lasermarkierungen L und R). Um die gewünschte Rotationsposition zu bestätigen, können zwei Pins seitlich in das Größenmessinstrument eingebracht werden, um die transepikondyläre Achse abzuschätzen. Die Whiteside-Linie kann durch die Öffnung in der Mitte des Instruments als Referenz herangezogen werden. Implantatgröße und Rotation werden durch Festziehen der Flügelschrauben festgelegt. Um das Instrument für die Rotationausrichtung zu fixieren, können optional zwei Pins durch die unteren Pinlöcher gesetzt werden.

- Zwei lange kopflose Pins werden durch die beiden frontalen Löcher eingebracht, auf die anschließend der 4-in-1-Sägeblock positioniert wird. Wir empfehlen, die Ebene der anterioren Resektion unter Verwendung der Schnitttiefen-Kontrollplatte in den Schlitzen des Ausrichtblocks zu überprüfen. Die zu wählende Größe wird an der Skala abgelesen (siehe Kapitel 6 Montageanleitung und Instrumentenhandhabung).
- Die posterioren Pins und der Ausrichtblock werden entfernt, sodass nur noch die kopflosen Pins für den 4-in-1-Sägeblock vorhanden sind.

Femurausrichtblock NS580R

Kopflose Pins 63 mm NP583R

Pineindreher NP613R

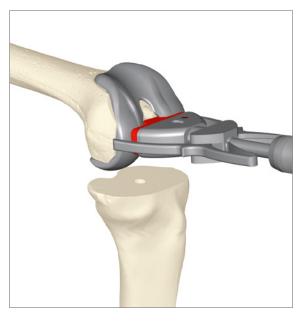
Acculan 4 Bohr- und Fräsmaschine GA330 mit Bohraufsatz GB664R

9.4 4-in-1-Resektion

- Der zur Femurgröße passende 4-in-1-Sägeblock wird durch die Pinlöcher mit der Markierung "O mm" über die beiden kopflosen Pins aufgeschoben und auf die distale Resektion gedrückt. Wir empfehlen, die Ebene der anterioren Resektion unter Verwendung der Schnitttiefen-Kontrollplatte in den Schlitzen des Ausrichtblocks zu überprüfen, bevor die konvergierenden Kopfpins zur Fixierung platziert werden.
- Bevor der Sägeblock endgültig mit zwei konvergierenden Pins fixiert wird, ist es möglich, die AP-Position mit den mit "+/1,5 mm" markierten Löchern zu verändern, um eine zu geringe Resektion oder ein Notching des anterioren Kortex zu vermeiden.

- Die Resektionen werden wie folgt durchgeführt: anteriorer Schnitt, posteriorer Schnitt, Entfernung der Größenfestlegungspins, posteriorer Schrägschnitt, anteriorer Schrägschnitt. Damit bleibt die maximale distale Kontaktfläche und eine zuverlässige Schnittblockfixierung bis zur letzten Resektion erhalten.
- Die konvergierenden Pins und der Sägeblock werden entfernt und die Resektionen sorgfältig auf mögliche Knochenreste überprüft. Falls notwendig kann ein Meißel zur Entfernung von Knochenresten genutzt werden.

4-in-1-Femur-Sägeblock NS582R-NS588R



Schnitttiefen-Kontrollplatte NS850R



Acculan 4 Oszillierende Säge GA330

9 | FEMURPRÄPARATION

- Die Qualität der Resektionen und die Passgenauigkeit der Prothese kann durch Platzierung des Probefemurimplantats auf dem vorbereiteten Knochen eingeschätzt werden. Verwenden Sie dazu den Femurhalter und vergewissern Sie sich, dass Sie Kraft in anteriorer Richtung aufwenden, um eine flektierte Position zu vermeiden.
- Zur Wahl einer kleineren Femurgröße wird ein kleinerer 4-in-1-Sägeblock direkt auf dieselben anterioren kopflosen Pins unter Verwendung derselben Löcher wie zuvor (-1,5/0/+1,5) platziert. Da der Referenzpunkt anterior liegt, werden Sie denselben anterioren Schnitt erzielen, dabei jedoch die posterioren Kondylen, die posterioren und anterioren Schrägschnitte neu schneiden. Dadurch wird die posteriore Spalte entsprechend geöffnet.

- Eine Probereposition kann mit dem Tibiaplateau und der entsprechenden Meniskuskomponente durchgeführt werden.
- Die Zapfenlöcher für das endgültige Femurimplantat werden mit einem Anschlagbohrer gebohrt. Diese legen die finale Position des Implantates fest. Daher wird unbedingt empfohlen, die Zapfenlöcher erst nach der Funktionsprüfung des Gelenkes mit Probereposition zu bohren.

INSTRUMENTE

Einsatz für NS600R, NS601-NS603

Femurhalter NS600R

NE758K, Narrow UC: NS981K-NS986K

Femurprobeimplantat Tibia-Pr PS Pro: NS740K- NS732R NS759K, NE702K-NE708K, NE752K-

Tibia-Probeplateau NS732R-NS738R

Tibia-Probeplateauhalter NQ378R

u- P N

Probegleitfläche NS772-NS778, NS782-NS788 (PS Pro), NS622-NS658 (UC)

Ergänzungsplatte UC/PS NS675-NS697

9.5 PS Boxpräparation

- Die Zapfenlöcher werden vor der Boxpräparation gebohrt.
- Der Probefemur in passender Größe wird auf dem vorbereiteten Femur platziert. Vergewissern Sie sich, dass Sie Kraft in anteriorer Richtung aufwenden, um eine flektierte Position zu vermeiden.

• Die Fräsführung wird auf die Zapfenlöcher des Probeimplantats aufgesetzt und mit einem Pin fixiert. Optional kann der Probefemur mit zwei zusätzlichen Pins fixiert werden.

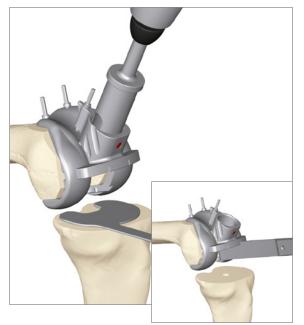
Fräsführung für die Box NS797R-NS799R

Femurzapfenbohrer NE458R

Kopfpins 50 mm NP586R

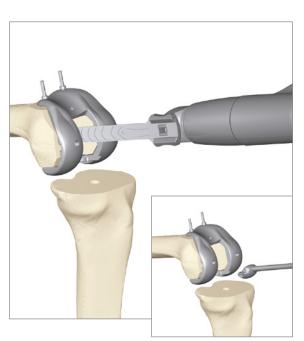
Pineindreher NP613R

Acculan 4 Bohr- und Fräsmaschine GA330 mit Bohraufsatz GB664R



Kopflose Pins 63 mm NP583R

Bohrer Ø 9 mm NE443R


9 | FEMURPRÄPARATION

- Verwenden Sie den Boxfräser der richtigen Größengruppe, um die zylinderförmige Box zu präparieren.
- Verwenden Sie eine Schutzplatte für die Tibia.

HINWEIS

Um unkontrollierte Blutungen im interkondylären Bereich zu vermeiden, wird eine Koagulation zur Blutstillung empfohlen.

- Der restliche Knochen bei der medialen und lateralen Boxwand wird mit einer schmalen Säge oder einem Flachmeißel entfernt.
 Achten Sie darauf, dabei nicht zu tief in den Femur zu sägen.
- Die Fräserführung wird entfernt und eine Probereposition mit den PS Pro Meniskuskomponenten kann durchgeführt werden.
- Um den Postcam-Mechanismus zu pr
 üfen, kann optional der Probecam mit dem Handgriff eingesetzt werden.

INSTRUMENTE

Femurproben PS Pro: NS740K-NS759K, NE702K-NE708K, NE752K-NE758K, Narrow UC: NS981K-NS986K

Fräserführung für die Box NS797R-NS799R

Femurboxfräser NS794R-NS796R

Probecam NS763R-NS767R

Acculan 4 Oszillierende Säge GA330

Handgriff für Probecam NS761R

10.1 Tibia-First-Messung mit Distanzblöcken vor Durchführung der Femurresektion

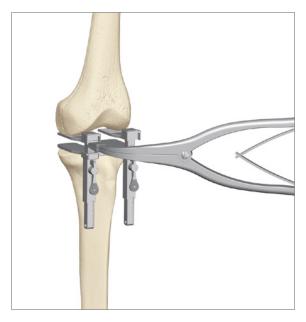
Prüfen Sie nach erfolgter Tibiaresektion die Resektionsebene, indem Sie den dünnsten Distanzblock (10 mm) in das Gelenk schieben. Falls die Resektion korrigiert werden muss, bringen Sie den Sägeblock erneut an und korrigieren Sie den proximalen Tibiaschnitt. Die Weichteilsituation kann bewertet werden, indem mit einem Distanzblock in Extension und Flexion eine Varus-/Valgus-Belastung ausgeführt wird.

HINWEIS

Bei der PS Version bzw. bei der UC Version optional, muss das hintere Kreuzband vor der Bewertung der Streck- und Beugelücken gelöst und entfernt werden, da die Beugelücke nach Resektion des hinteren Kreuzbandes vergrößert wird.

 Ebenso können nach erfolgter distaler Femurresektion durch Hinzufügen des zusätzlichen Femurschnitt-Distanzblocks Messungen in Extension durchgeführt werden.

Spacer Tibiaschnitt NS852R-NS854R



Ausrichtstab lang NP471R

Zusätzlicher Spacer Femurschnitt NS329

10 | SPALTAUSGLEICH



10.2 Optional Tibia-First-Messung mit Distraktor

- Prüfen Sie nach erfolgter Tibiaresektion die Weichteilsituation.
 Stecken Sie den Distraktor in das Gelenk und verwenden Sie die Spreizerzange, um die medialen und lateralen Lücken nacheinander in Extension aufzuspreizen.
- Falls die medialen und lateralen Lücken asymmetrisch sind, kann es notwendig sein, die kontrakte Seite entsprechend zu releasen und die Spaltmessungen danach zu wiederholen. Hierbei ist zu berücksichtigen, dass die distalen Femurkondylen noch nicht geschnitten wurden und dadurch eine gewisse Asymmetrie ausgeglichen wird.

HINWEIS

Das Distraktor-Set ist im Navigationsinstrumentarium (NP138) enthalten oder kann optional bestellt werden (siehe optionale Instrumente).

- Der Streckspalt wird gemessen und die Dicke notiert. Der Beugespalt wird auf gleiche Weise gemessen und notiert. Beim Ergebnis der Beugespaltmessung die Femurrotation mit berücksichtigen.
- Falls der Beugespalt (BS) und Streckspalt (SS) unterschiedlich sind, berechnen Sie die notwendige Dicke der distalen Resektion, um Flexion und Extension auszugleichen: distale Resektionshöhe = distale Dicke der Implantatgruppe (7 mm, 8,5 mm oder 10 mm) SS + BS.

HINWEIS

Bei der PS bzw. UC Version (optional) muss das hintere Kreuzband vor diesem Schritt entfernt werden, da seine Entfernung die Flexionsspalten vergrößern wird.

INSTRUMENTE

Spreizerzange NP609R

Femur-/Tibia-Distraktor NP604R

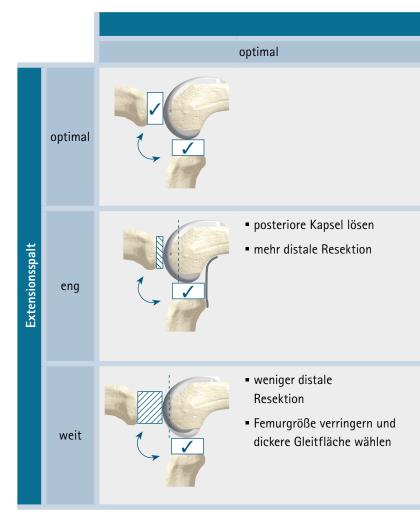
10.3 Femur-First-Messung mit Spacern

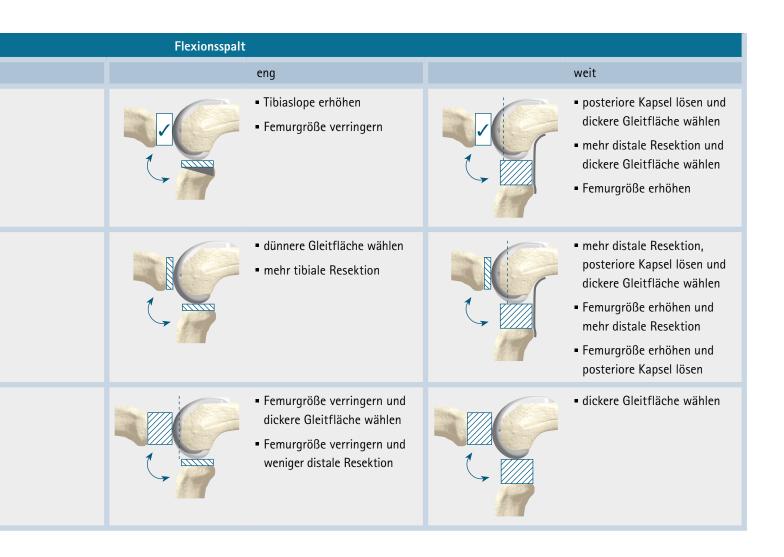
- Nach Abschluss der Femur- und Tibiaresektionen wird das Probefemurimplantat auf dem Femur platziert. Alternativ kann der zusätzliche Femurschnitt-Distanzblock verwendet werden.
- Falls die medialen und lateralen Lücken asymmetrisch sind, kann an dieser Stelle die kontrakte Seite released werden und die Spaltmessungen danach mit den Distanzblöcken wiederholt werden, bis eine ausreichende Stabilität erreicht wird.
- Falls die Flexions- und Extensionslücken ungleich sind, lesen Sie bitte im Kapitel 10.4 Strategien nach und legen Sie die richtigen Korrekturmaßnahmen fest.
- Die Dicke des letzten Distanzblocks, welcher gute Balance und Stabilität des Knies gewährleistet, entspricht der zu verwendenden Dicke der benötigten Meniskuskomponente.
- Die Beinachse kann bei jedem Arbeitsschritt überprüft werden, indem Sie den Ausrichtungsstab durch den Griff des Distanzblocks stecken. Der Stab sollte auf die Mitte des Femurkopfs bzw. Knöchelgelenks weisen.
- Ebenso können nach erfolgter distaler Femurresektion durch Hinzufügen des zusätzlichen Spacer Tibiaschnitts Messungen in Extension durchgeführt werden.

Spacer Tibiaschnitt NS852R-NS854R

Zusätzlicher Spacer Tibiaschnitt NS497-NS499

Ausrichtstab lang NP471R


10 | SPALTAUSGLEICH


10.4 Strategien

Falls die Flexions- und Extensionsspalten nicht ausgeglichen sind, muss eine individualisierte Strategie zur Korrektur des Problems definiert werden.

Die Tabelle zeigt einige mögliche Optionen zur Korrektur von Situationen, in denen Flexions- und Extensionsspalten nicht gleichermaßen optimal vorliegen, sondern entweder zu eng oder zu weit sind.

Dabei handelt es sich allerdings nicht um umfassende systematische Lösungsvorschriften. Der Chirurg muss seine eigene Wahl abhängig von klinischer Bewertung, operativer Situation, patientenspezifischen Problemen und seiner eigenen Erfahrung treffen.

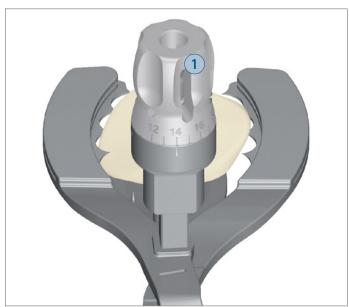
Übersicht Femur/Tibia Kompatibilität

Größe	F2	F3	F4N	F4	F5N	F5	F6N	F6	F7	F8
T2										
T3										
T4										
T5										
T6										
T7										
T8										

Tibia > Femur = keine Begrenzung

Femur > Tibia = es sind maximal zwei Femurgrößen größer erlaubt

Standard-Kombination mögliche Kombination


HINWEIS: Die Größe der Meniskuskomponente richtet sich nach der Femurgröße. Für die Narrow (N) Komponenten gelten die gleichen Kombinationen wie für die Standardgrößen. Alle Patellagrößen können mit jeder Femurgröße kombiniert werden.

11 | PATELLAPRÄPARATION

- Die Dicke der Patella wird mit der Schieblehre gemessen. Diese Dicke sollte nach der Implantation des Patellaimplantats nicht überschritten werden. Die Ebene der Knochenresektion wird berechnet. Die Mindestdicke des verbleibenden Patellaknochens sollte 12 mm betragen.
- Die Patella wird festgeklemmt und die Ebene der Resektion wird angepasst, indem das Tiefenresektionsrad (1) auf die geplante verbleibende Patellaknochendicke gedreht wird.
- Die Resektion erfolgt durch den Schlitz mit einem 1,27 mm dicken Sägeblatt.

INSTRUMENTE

Schieblehre AA847R

Patellaresektions-Haltezange NS840R

Accukan 4 Oszillierende Säge GA330

- Die Patellaresektions-Haltezange wird entfernt. Die Patella Bohr- und Andrückzange wird in medialisierter Position auf die osteotomierte Patellafläche gesetzt, um den resezierten Apex der Gelenkfläche nachzubilden. Die Probepatella kann oben auf der Bohrführung platziert werden, um ihre Position zum medialen Rand und ihre angemessene Positionierung in superiorer und inferiorer Richtung zu überprüfen.
- Die Zapfen des Implantats werden mit dem 6-mm-Bohrer bis zum Anschlag durch die Löcher gebohrt.

 Die Größe der Patella wird mit Hilfe des zugehörigen Probepatellaimplantats bestimmt.

Patella Bohr-/Andrückzange NS841R

Acculan 4 Bohr- und Fräsmaschine GA330 mit Bohraufsatz GB664R

Anschlagbohrer Ø 6 mm NQ449R

Probepatella NQ281-NQ285

12 | PROBEREPOSITION

- Probefemur und Probetibia werden auf den vorbereiteten Knochenflächen platziert.
- Die Probegleitfläche, die dem Ergebnis der Spaltmessungen mit Distanzblöcken oder Distraktor entspricht, wird zwischen den beiden Probeimplantaten platziert. Die modularen Probegleitflächen sind je nach Version (FP, UC oder PS) in unterschiedlichen Höhen verfügbar.
- Zur Probereposition des rechten und linken Knies werden die entsprechenden e.motion® Pro Probekomponenten verwendet. Die Maße der Probekomponenten entsprechen denen der endgültigen Implantate. Zusammen mit der Ergänzungsplatte kann die gewünschte Höhe der Probegleitfläche erreicht werden. Dabei kann die medialisierte Rotationsmitte über den Probe Rotationszapfen simuliert werden. Nachdem Probespacer und Probegleitfläche zusammengefügt wurden, zeigen die Buchstaben L oder R für welche Gelenkseite die Verbindung geeignet ist.
- Die Stabilität des Gelenks wird durch Anwendung von Varus-/Valgus-Belastungen in Extension und Flexion bewertet.
 Falls das Gelenk nicht stabil erscheint (d. h. Spalten öffnen sich unter Belastung), wird eine dickere Probegleitfläche getestet.
- Der Bewegungsumfang des Knies wird mit den Probekomponenten bewertet. Eingeschränkte Extension und Flexion sowie eine deutliche Hyperextension sind zu vermeiden.

HINWEIS

Wenn die PS Pro Version verwendet wird, bitte in Hyperextensionsstellung prüfen, ob der PS Zapfen mit anteriorem Knochen in Berührung kommt.

Knochen falls nötig entfernen.

HINWEIS

Falls Tibiaaugmente präpariert wurden, werden diese bei der Probe mit eingesetzt (siehe Kapitel 8.4).

INSTRUMENTE

Tibia-Probeplateau NS732-NS738R

Tibia-Probeplateauhalter NQ378R

Probegleitfläche PS Pro: NS772-NS788 UC: NS622-NS650

Ergänzungsplatte UC/PS NS675-NS697

Rotationszapfen NS739R

NOTIZEN

13 | IMPLANTATION DER ENDGÜLTIGEN KOMPONENTEN

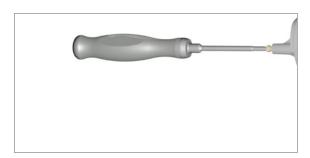
 Für die Montage des Verlängerungsschaftes mit dem Tibiaimplantat muss der Schaft mit 20 Nm festgezogen werden.
 Die Montage des Verlängerungsschaftes am OP Tisch durchführen und durch eine zweite Person zusätzlich halten lassen.

 Bei der Implantation der e.motion® UC Pro oder PS Pro kann der Rotationszapfen, der der Höhe der Meniskuskomponente entspricht, vor der Implantation am Tibiaimplantat befestigt werden. Mit Hilfe des Drehmomentschlüssels mit Adapter wird der Rotationszapfen mit 10 Nm festgezogen.
 Option: Der Rotationszapfen kann auch in das Tibiaimplantat eingebracht werden, nachdem der Zement gehärtet ist.

INSTRUMENTE

Gegenhalter für Schaftfixation NS570R

Drehmomentschlüssel NE184RM


Schaftadapter NE185R für 12 mm und 14 mm

Schaftadaper NS835R für Schaftdurchmesser 10 mm

- Für die Montage des Verlängerungsschaftes am Tibiaimplantat, muss der Schaft mit 20 Nm festgezogen werden.
 Die Montage des Verlängerungsschaftes am OP Tisch durchführen und durch eine zweite Person zusätzlich halten lassen
- Bei Verwendung einer Verschlussschraube sollte diese mit dem Schaftspannschlüssel NP732R handfest befestigt werden.
 Option: Alternativ kann ein PEEK Tibia-Verschlussstopfen verwendet werden. Dieser wird am Tibiaimplantat von Hand oder mit dem Schraubendreher NS423R angebracht.

Die folgende Implantationsreihenfolge wird empfohlen:

- Tibiaimplantat
- Femurimplantat
- Gleitfläche
- Patella
- Das endgültige Tibiaimplantat wird exakt in die vorbestimmte Position gebracht. Die endgültige Positionierung erfolgt mit Hilfe des Einschlägers für Tibiaplateaus.

HINWEIS

Bei Verwendung einer Verschlussschraube sollte diese mit dem Schaftspannschlüssel NP731R (10 und 12 mm) oder NP732R (14 und 16 mm) handfest befestigt werden.

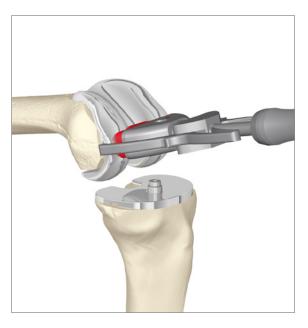
Einschläger für Tibiaplateau NS425

Tibiaimplantat und Rotationszapfen

Drehmomentschlüssel NE160R

Adapter für Drehmomentschlüssel NP450R Ø 4,5 mm

PEEK Tibia-Verschlussstopfen NN260P



Schraubendreher SW 3,5 NS423R

Schaftspannschlüssel NS378R

13 | IMPLANTATION DER ENDGÜLTIGEN KOMPONENTEN

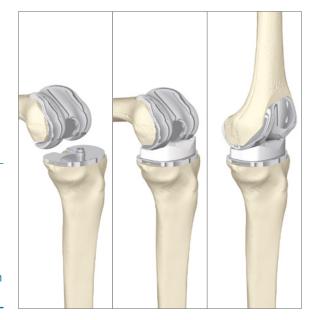
- Unter Verwendung des Femurimplantathalters und dem Einsatz der entsprechenden Größengruppe wird das endgültige Femurimplantat ausgerichtet und implantiert. Achten Sie darauf, dass der Halter sicher mit dem Femurimplantat verbunden ist, damit es während des Einbringens nicht verrutscht. Desweiteren ist besonders auf die sagittale Ausrichtung zu achten: Ein Drücken des Halters in anteriore Richtung hilft dabei, eine Implantation in einer flektierten Position zu vermeiden.
- Der Femurhalter wird durch Drehen des Griffs entgegen der Uhrzeigerrichtung entriegelt. Die Klammern lassen sich anschließend vom Femur lösen.

 Der Femureinschläger wird verwendet, um das Implantat endgültig einzuschlagen.

INSTRUMENTE

Implantat Halte-/Einsetzinstrument NS600R

Femureinsatz zu NS600R, NS601-NS603



Femureinschläger NS424

Femurimplantat


 Die Gleitfläche wird über dem Rotationszapfen (UC Pro oder PS Pro) platziert.

HINWEIS

Es wird empfohlen, eine Probegleitfläche zum Aushärten des Knochenzements zu verwenden. Anschließend kann noch einmal der Bewegungsumfang und die Gelenkstabilität überprüft werden, bevor die endgültige Entscheidung zu Typ und Dicke der originalen Gleitflächen getroffen wird. Hierzu wird der Probe Rotationszapfen NS540P in das endgültige Tibiaimplantat geschraubt.

Die Patella wird unter Verwendung der Patella Bohr- und Andrückzange und des konkaven Kunststoffeinsatzes implantiert, welche eine gute Kompression während des Zementaushärtungsvorgangs unterstützt.

HINWEIS

PS Prothesen haben technisch bedingt einen längeren Trochleaausschnitt. Das Patellatracking muss daher überprüft werden. Bei Patella Clunk Syndrom muss die Patella bearbeitet werden, bzw. mit einer künstlichen Patella ersetzt werden.

Gleitfläche

Patella Bohr-/Andrückzange NS841R

Einsatz für NS841R, NS842

Patella

Probe Rotationszapfen NS540P

14 | ZEMENTIERTECHNIK

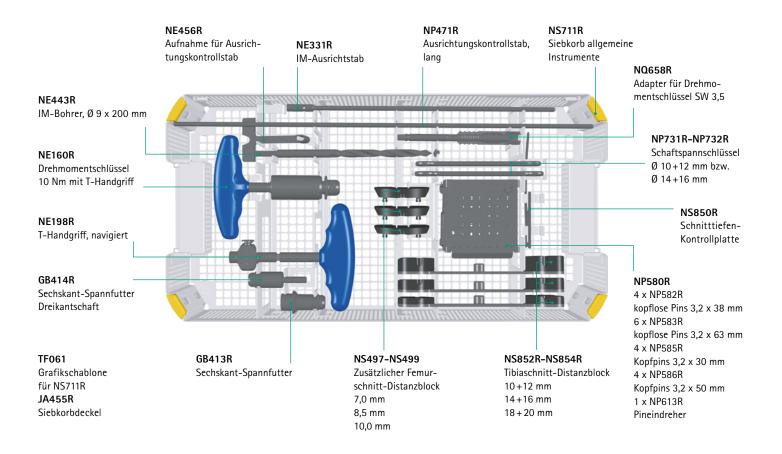
- Unabhängig von der verwendeten Fixierungsmethode ist es von größter Bedeutung, korrekte Techniken anzuwenden, um Komplikationen und ein frühzeitiges Versagen zu vermeiden. Außerdem ist es wichtig, selbst bei exakten Schnitten sicherzustellen, dass die Komponenten vollständig auf den vorbereiteten Knochenflächen sitzen. Die Varus-/Valgus-Ausrichtung kann durch ungleichmäßige medio-laterale Zementmäntel und schlecht sitzende Komponenten erheblich beeinträchtigt werden. Falls nicht besonders vorsichtig vorgegangen wird, besteht das Risiko, Femurkomponenten in flektierter Position zu platzieren.
- Endgültige Komponenten sitzen nach ihrer Zementierung stabiler als die Proben. Deshalb empfiehlt es sich, die Balance und Stabilität nach dem Zementieren erneut zu prüfen, damit bei Bedarf weitere Anpassungen vorgenommen werden können. Schlechte Zementiertechniken konnten mit einer frühen und kontinuierlichen Komponentenmigration in Verbindung gebracht werden. Diese wiederum führt zu einer signifikant höheren Rate von aseptischen Lockerungen. Daher muss beim Zementiervorgang besonders sorgfältig gearbeitet werden (4).
- Die Vorbereitung der Knochenflächen und des spongiösen Knochens sollte mit Jet-Lavage erfolgen, bei der das Knie unter einer Blutsperre liegt. Dieser Schritt gestattet eine gute

- Zementpenetration und Verbindung mit den vorbereiteten knöchernen Flächen (5, 6). Außerdem werden Knochenreste entfernt, die als Fremdkörper agieren und den Polyethylenverschleiß nach der Operation erhöhen können. Das Implantatbett muss vor dem Zementieren gründlich getrocknet und freigelegt werden (7, 8). Alle Flächen müssen zur besseren Zementpenetration während des Zementiervorgangs unter Druck gesetzt werden. Besonderes Augenmerk sollte auf die Zementierung der dorsalen femoralen Kondylen gelegt werden (9). Diese hat einen wesentlichen Einfluss auf die Fixation der Prothesen. Zusätzlich sollten Sie beim Aushärten des Zements mit gestrecktem Bein distalen Druck aufbauen, um das Eindringen des Zements in den Knochen zu verbessern.
- Achten Sie darauf, allen überschüssigen Zement, der aus der Implantat-Knochen-Schnittstelle hervortritt, vollständig zu entfernen. Jegliche Überreste von hervorstehendem Zement können das umgebende Weichgewebe beeinträchtigen oder verletzen. Diese freien Zementreste können zu einem Drittkörperverschleiß führen, der zu einer frühzeitigen Verschlechterung der Fixierung beitragen kann (10). Weitere Empfehlungen zur Zementiertechnik sind in der wissenschaftlichen Broschüre O61801 "AESCULAP" Implantatverankerung beim Kniegelenk" zusammengefasst.

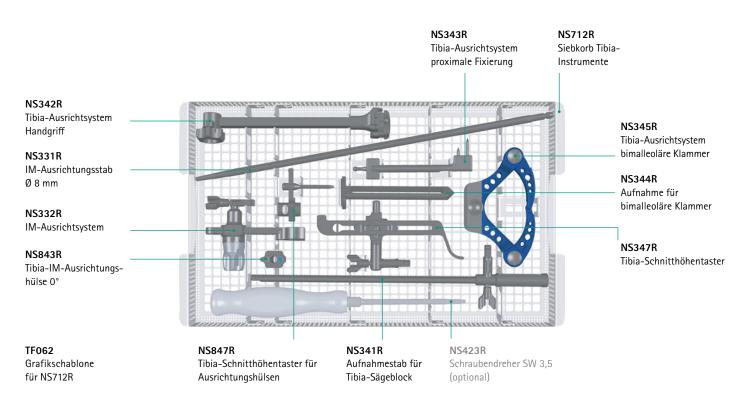
- Spülen Sie das Gelenk nach der Zementpolymerisation und Entfernung des gesamten überschüssigen Zements gründlich aus.
 Falls eine Blutsperre verwendet wird, lösen Sie diese und führen die Hämostase durch.
- Verschließen Sie die einzelnen Weichgewebeschichten in üblicher Vorgehensweise.

15 | INSTRUMENTE

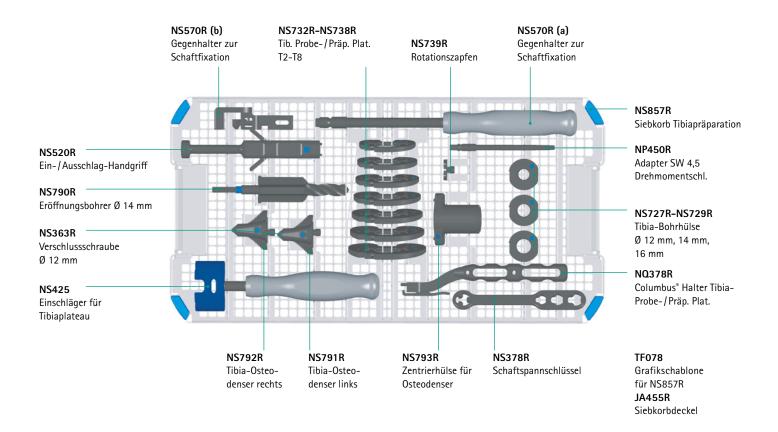
SETS

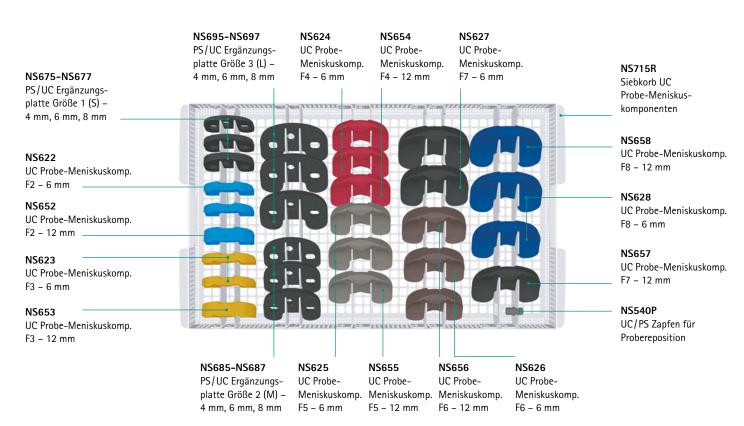

Art. Nr.	Beschreibung	Empfohlener Container	Deckel	Siebhöhe inkl. Deckel/mm
NS760	e.motion® UC Pro Instrumentarium			
Bestehen	d aus:			
NS701	IQ e.motion® Pro Set Allgemeine Instrumente	JK444	JK489	119
NS702	IQ e.motion® Pro Set Tibiainstrumente	JK444	JK489	119
NS703	IQ e.motion® Pro Set Femurpräparation	JK442	JK489	89
NS856	IQ e.motion® Pro Set Tibiapräparation +	JK444	JK489	119
Einsatz	UC Pro Probe-Meniskuskomponenten			
für 856				
NS706	IQ e.motion® Set Femur UC Probeimplantate	JK444	JK489	119

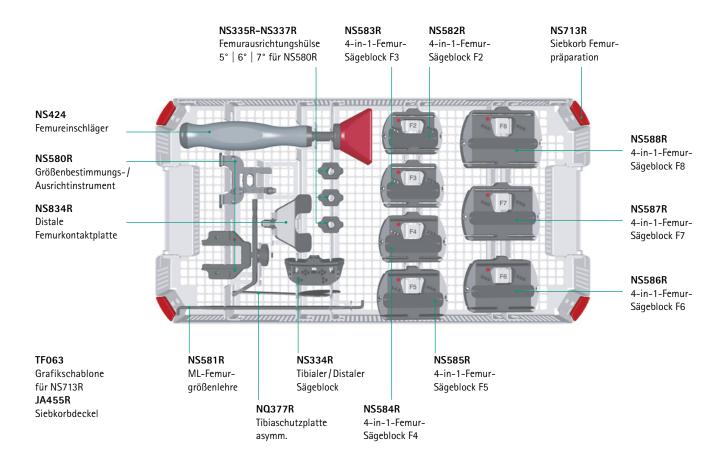
Art. Nr.	Beschreibung	Empfohlener Container	Deckel	Siebhöhe inkl. Deckel/mm
	e.motion® PS Pro			
Bestehen	d aus:			
NS770	IQ e.motion® PS Pro Set Femurprobeimplantate und Präparation	JK444	JK489	119
NS780	IQ e.motion® PS Pro Set Meniskuskomponenten	JK441	JK489	69

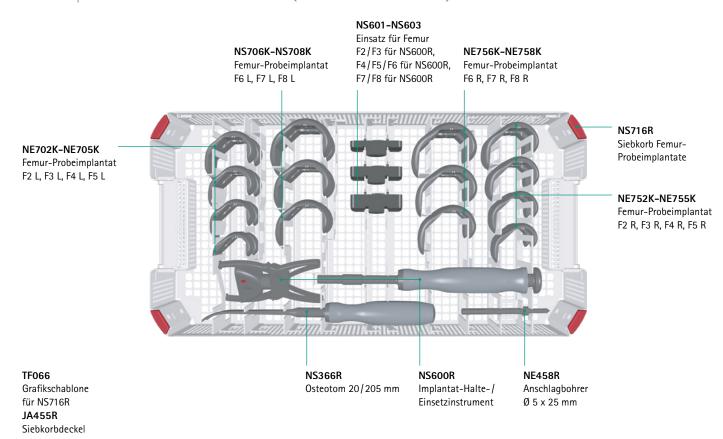

OPTIONALE SETS

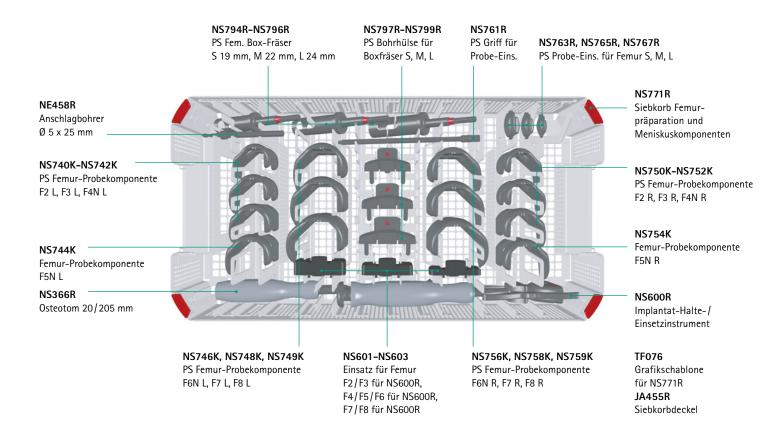
Art. Nr.	Beschreibung	Empfohlener Container	Deckel	Siebhöhe inkl. Deckel/mm
	e.motion® Pro Tibia-Verlängerungsschäfte			
NS858	IQ e.motion® Set Tibia-Verlängerungsschäfte	JK442	JK489	89
NS768	IQ e.motion® PS Pro Set Femurprobeimplantate Standardgrößen	JK444	JK489	119
	e.motion® Pro Standard/Pro Tibiaaugmente			
NS910	IQ e.motion® Set Tibiaaugmente	JK342	JK389	89
	e.motion® Pro Femur Probeimplantate/ Instrumente, Set ist identisch zu NS706, aber Größen 4-6 in Narrow			
NS908	IQ e.motion® FP/UC Pro Femur Probeimplantat inkl. Narrow Größen (wie NS706 nur Gr. 4, 5, 6 – Narrow)	JK444	JK489	119
	Patella			
NS709	IQ Set Patellainstrumente	JK444	JK489	119
	Navigation			
NP138	IQ Set Navigationsinstrumente	JK444	JK489	119

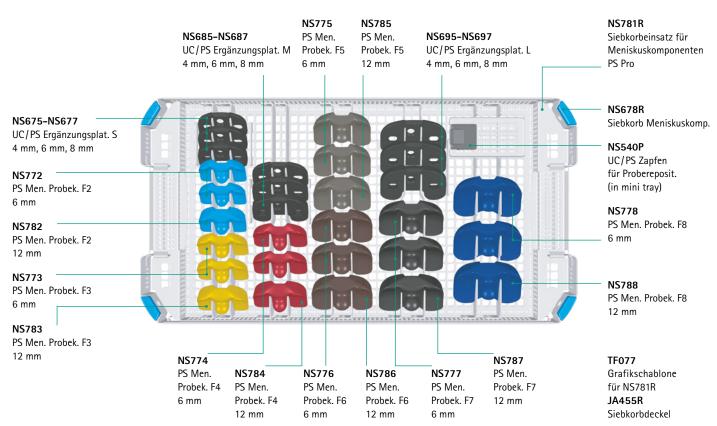

NS701 | ALLGEMEINE INSTRUMENTE

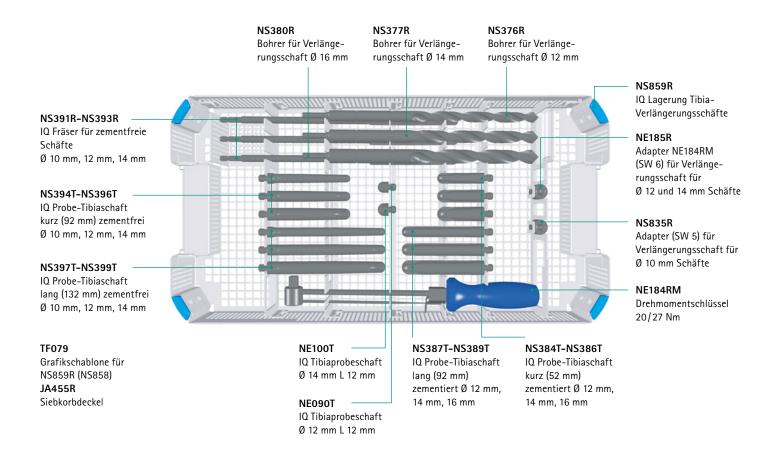

NS702 | TIBIAINSTRUMENTE

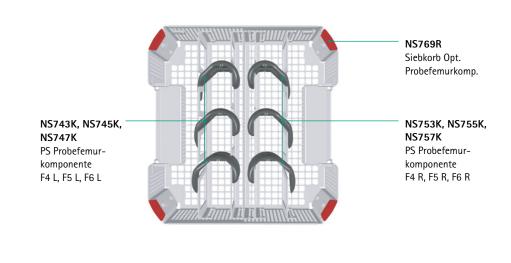

NS856 | TIBIAPRÄPARATION


EINSATZ FÜR NS856 UC PROBE MENISKUSKOMPONENTEN

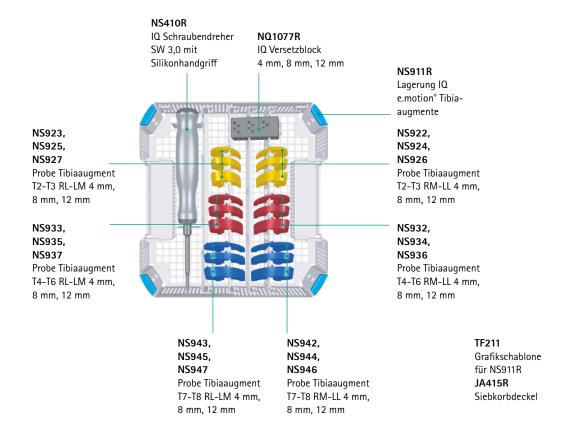

NS703 | FEMURPRÄPARATION


NS706 | FEMUR-PROBEIMPLANTATE (F4-F6 IN STANDARD)

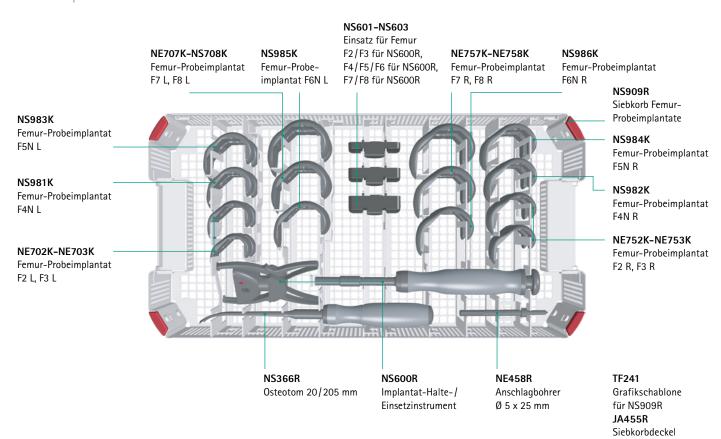

NS770 | PS PRO FEMURPRÄPARATION (F4-F6 IN NARROW)


NS780 | PS PRO MENISKUSKOMPONENTEN

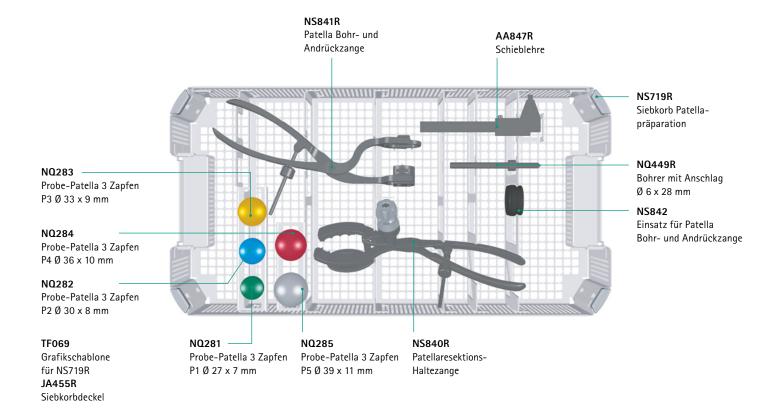
NS858 | TIBIA-VERLÄNGERUNGSSCHAFT

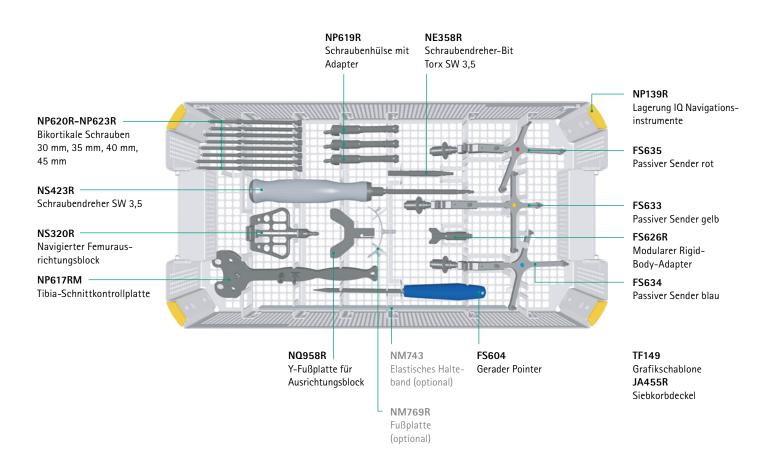


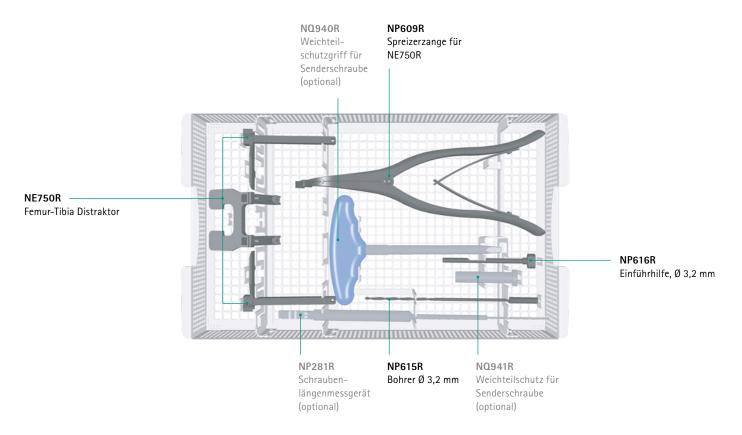
NS768 | PS PRO PROBEFEMURKOMPONENTEN STANDARDGRÖSSEN



TF075 Grafikschablone für NS769R JA415R Siebkorbdeckel


NS910 | TIBIAAUGMENTE


NS908 | FEMUR-PROBEIMPLANTATE MIT NARROW-FEMURPROBEN



NS709 | PATELLAPRÄPARATION

NP138 | NAVIGATIONSINSTRUMENTE

16 | OPTIONALE INSTRUMENTE

ALLGEMEIN

NP609R Spreizerzange

NP604R Femur/Tibia-Distraktor

NM640 Kraftgesteuertes Spreizer Set

NE150R Beinhalter für TKA NE153R Fixierrahmen

NP742R Einschläger für Befestigungspin NP743R Fixationsstift-Ausziehinstrument NP748R, NP749R, NP750R Einschlagpins

FEMUR

NS578R Femur-Ausrichtungshülse 8°

NS579R Femur-Ausrichtungshülse 9°

TIBIA

NS406R medialisierter Tibiaschnittblock links

NS407R medialisierter Tibiaschnittblock rechts

NS861R FGT Tibiakorrekturschnittblock 2° var/val

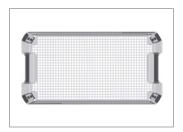
NS879R Gegenführung für NS861R

NS863R FGT Tibia EM Ausrichtsystem (Montageanleitung in Broschüre 047301)

NE425R Tibiahöhentaster

NS844R Tibia-IM-Ausrichtungshülse 3°

NS845R Tibia-IM-Ausrichtungshülse 5°



NS846R Tibia-IM-Ausrichtungshülse 7°

NP684R Ausschlaginstrument

LAGERUNG OPTIONALE INSTRUMENTE

NQ1429R Lagerung optionale Instrumente groß, Deckel JA455R

NE1029R Lagerung optionale Instrumente klein, Deckel JA415R

HINWEIS

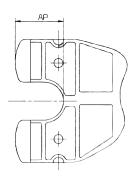
Für die optionalen Siebe werden folgende Container und Deckel empfohlen:

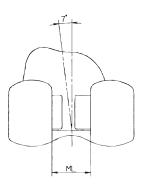
NQ1429R: Container JK442, Deckel JK489 NE1029R: Container JK342, Deckel JK389

17 | SÄGEBLÄTTER

System	Art. Nr.	Breite	Dicke	Sägeblätter 1 steril 2
AESCULAP [®] Acculan 3 Ti, Acculan 4 Länge 75 mm	GE231SU	9 mm	1,27 mm	
AESCULAP® Acculan 3 Ti, Acculan 4	GE233SU	13 mm	1,27 mm	
Länge 90 mm	GE236SU	13 mm	1,27 mm	
	GE241SU	19 mm	1,27 mm	
	GE246SU	23 mm	1,27 mm	
AESCULAP [®] Acculan 3 Ti, Acculan 4 Länge 100 mm	GE249SU	19 mm	1,27 mm	001
Stryker	GE330SU	13 mm	1,27 mm	
System 4-7	GE331SU	19 mm	1,27 mm	1,27
Länge 90 mm	GE332SU	25 mm	1,27 mm	. 1
Synthes Trauma Recon System Battery Power Line Battery Power Line II Länge 90 mm	GE323SU	13 mm	1,27 mm	
Zimmer-Biomet Universal Länge 90 mm	GE326SU	25 mm	1,27 mm	
Conmed Power Pro	GE327SU	13 mm	1,27 mm	
Mpower Mpower 2, Hall 50 Länge 90 mm	GE329SU	25 mm	1,27 mm	

Eine komplette Übersicht aller erhältlichen Sägeblätter mit AESCULAP® Kupplung finden Sie in unserem Burrs & Blades Katalog 017599.

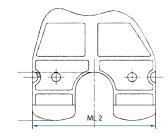

System	Sägeblatt für Stichsäge 75/10/1,0/1,2 mm	Sägeblatt für Stichsäge 75/12/1,0/1,2 mm
Acculan 3 Ti, Acculan 4	·	
	GC769R	GC771R

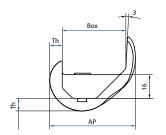

18 | IMPLANTATMAßE UC PRO FEMUR

AP-/ML-Maße der e.motion® Pro Femurimplantate für eine ggf. nötige Verwendung von intramedullären Nägeln.

Dimensionen in mm

Größe	AP	ML
F2	20	18
F3	22	19
F4	24	20
F5	27	21
F6	29	22
F7	31	23
F8	33	25



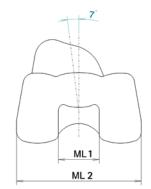


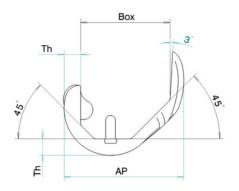
FEMURKOMPONENTE

Dimensionen in mm

ML 2	AP	Box	Th
56	50	37	7
60	54	40	7
64	58	43	8,5
60	58	43	8,5
68	62	46	8,5
64	62	46	8,5
72	66	49	8,5
68	66	49	8,5
76	70	52	10
80	74	55	10
	56 60 64 60 68 64 72 68 76	56 50 60 54 64 58 60 58 68 62 64 62 72 66 68 66 76 70	56 50 37 60 54 40 64 58 43 60 58 43 68 62 46 64 62 46 72 66 49 68 66 49 76 70 52

18 | IMPLANTATMAßE

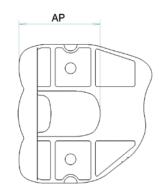

PS PRO FEMUR

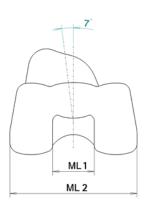

Femurkomponente

Die Tabelle bietet eine Übersicht über die wichtigsten Dimensionen der e.motion® PS Pro Femurimplantate.

Dimensionen in mm

Größe	ML 2	AP	Box	Th
F2	56	50	37	7
F3	60	54	40	7
F4N	60	58	43	8,5
F4	64	58	43	8,5
F5N	64	62	46	8,5
F5	68	62	46	8,5
F6N	68	65	49	8,5
F6	72	66	49	8,5
F7	76	70	52	10
F8	80	74	55	10

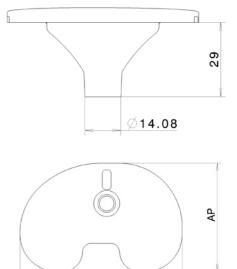


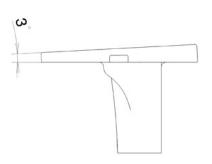


AP-/ML-Maße (mm) der e.motion® PS Pro Femurimplantate für eine ggf. nötige Verwendung von intramedullären Nägeln.

Dimensionen in mm

Größe	AP	ML 1
F2	30	18
F3	33	19
F4N	36	20
F4	36	20
F5N	38	21
F5	38	21
F6N	41	22
F6	41	22
F7	42	23
F8	45	24

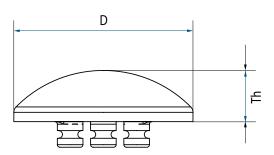

18 | IMPLANTATMAßE UC PRO TIBIA


Tibiakomponente

Die Tabelle bietet eine Übersicht über die wichtigsten Dimensionen der e.motion® UC Pro/PS Pro Tibiaimplanate.

Dimensionen in mm

Größe	ML	AP	AP/ML
T2	63	41	0,7
T3	67	44	0,7
T4	71	47	0,7
T5	75	50	0,7
T6	79	53	0,7
T7	83	56	0,7
T8	87	59	0,7

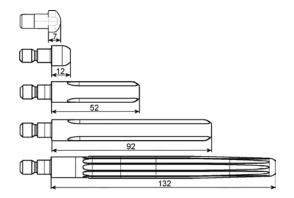

ML

Patella komponente

Die Tabelle bietet eine Übersicht über die wichtigsten Dimensionen der Patellaimplanate.

Dimensionen in mm

D	Th
26	7
29	8
32	9
35	10
38	11
	26 29 32 35


18 | IMPLANTATMAßE

TIBIA VERLÄNGERUNGSSCHÄFTE

Abmessungen in mm

	T0-T5
Tibiakiellänge	28
Tibiakiel + Obturator	35
Tibiakiel + Schaft 12 mm	40
Tibiakiel + Schaft 52 mm	80
Tibiakiel + Schaft 92 mm	120
Tibiakiel + Schaft 132 mm	160

Die Gesamtlänge des Tibiaplateaus mit dem entsprechenden Verlängerungsschaft ergibt sich aus der Tibiakiellänge und der Verschlussschraube 7 mm oder der Schaftlänge 12 mm, 52 mm, 92 mm oder 132 mm. Die Verschlussschraube ist in den Durchmessern 12 mm und 14 mm erhältlich. Alle Verlängerungsschäfte sind in den Durchmessern 10 mm, 12 mm und 14 mm verfügbar.

19 | LEIHSYSTEME

IMPLANTATE

Art. Nr.	Beschreibung
LSET-K0075	e.motion® UC/FP Femur R
LSET-K0075	e.motion® UC/FP Femur L
	·
LSET-K0021	e.motion® UC/FP Femur R zem. frei
LSET-K0026	e.motion® UC/FP Femur L zem. frei
LSET-K0150	e.motion® PS Pro Femur L
LSET-K0151	e.motion® PS Pro Femur R
LSET-K0161	e.motion® UC Pro Tibia L
LSET-K0162	e.motion® UC Pro Tibia R
LSET-K0155	e.motion® UC Pro Meniskusk. L
LSET-K0156	e.motion® UC Pro Meniskusk. R
LSET-K0163	e.motion® PS Pro Meniskusk. L
LSET-K0164	e.motion® PS Pro Meniskusk. R
LSET-K0131	AESCULAP® Tibiaschäfte
LSET-K0210	e.motion® Pro Tibia Augmente
LSET-K0176	AS e.motion® PS Pro Femur + Tibia L
LSET-K0177	AS e.motion® PS Pro Femur + Tibia R
LSET-K0178	AS e.motion® UC Pro Femur + Tibia L
LSET-K0179	AS e.motion® UC Pro Femur + Tibia R
LSET-K0211	AS e.motion® Pro Tib. Aug.
LSET-K0132	AS AESCULAP® Tibiaschäfte
LSET-K0041	e.motion® Patella

19 | LEIHSYSTEME

INSTRUMENTE

Art. Nr.	Beschreibung			
LSET-K0154	IQ e.motion® UC Pro Basis			
LSET-K0148	IQ e.motion® PS Pro Zusatz zu K0154			
LSET-K0198	IQ e.motion® FGT			
LSET-K0149	IQ e.motion® Pro Tibia Schaftpräparation			
LSET-K0209	IQ e.motion® Tibia Augmentpräparation			

OPTIONALE INSTRUMENTE

Art. Nr.	Beschreibung
LSET-K0165	IQ e.motion® UC Pro Tibia (nur Tibiapräparation)
LSET-K0051	IQ Navigation
LSET-K0130	IQ Patella

Aesculap Reset® INSTRUMENTE

Art. Nr.	Beschreibung
LSET-K0199LT	Aesculap Reset® IQ e.motion® PS Pro navigiert
LSET-K0206	Aesculap Reset® IQ e.motion® UC Pro
LSET-NS500LT	Aesculap Reset® IQ e.motion® Pro Basis
LSET-NS501LT	Aesculap Reset® IQ e.motion® Pro manuell
LSET-NS509LT	Aesculap Reset® IQ e.motion® Pro Tibia-Präp.
LSET-NS912LT	Aesculap Reset® IQ e.motion® PS Pro Fem-Präp. F2
LSET-NS913LT	Aesculap Reset® IQ e.motion® PS Pro Fem-Präp. F3
LSET-NS914LT	Aesculap Reset® IQ e.motion® PS Pro Fem-Präp. F4
LSET-NS915LT	Aesculap Reset® IQ e.motion® PS Pro Fem-Präp. F5
LSET-NS916LT	Aesculap Reset® IQ e.motion® PS Pro Fem-Präp. F6
LSET-NS917LT	Aesculap Reset® IQ e.motion® PS Pro Fem-Präp. F7
LSET-NS918LT	Aesculap Reset® IQ e.motion® PS Pro Fem-Präp. F8

RÖNTGENSCHABLONEN

Art. Nr.	Beschreibung			
NS416	PS Pro Femur – PS Pro/UC Pro Tibia – Standard Schäfte 1,10:1			
NS417	PS Pro Femur – PS Pro/UC Pro Tibia – Standard Schäfte 1,15:1			
NE398	FP/UC Femur, Patella 1,10:1			
NE399	FP/UC Femur Patella 1,15:1			

e.motion® Pro Implantatmatrix - Femurimplantate

Patella

Var.:	F2-F8
P1	NX041
P2	NX042
P3	NX043
P4	NX044
P5	NX045

Femur FP/UC zementiert

Var.:	F2	F3	F4	F4N	F5	F5N	F6	F6N	F7	F8
Links	N0502K	N0503K	N0504K	N0817K	N0505K	N0818K	N0506K	N0819K	N0507K	N0508K
Rechts	N0602K	N0603K	N0604K	N0917K	N0605K	N0918K	N0606K	N0919K	N0607K	N0608K

Femur FP/UC zementfrei

Var.:	F2	F3	F4	F4N	F5	F5N	F6	F6N	F7	F8
Links	N0582K	N0583K	N0584K	N0837K	N0585K	N0838K	N0586K	N0839K	N0587K	N0588K
Rechts	N0682K	N0683K	N0684K	N0937K	N0685K	N0938K	N0686K	N0939K	N0687K	N0688K

Femur PS Pro zementiert

Var.:	F2	F3	F4N	F4	F5N	F5	F6N	F6	F7	F8
Links	NX700K	NX701K	NX702K	NX703K	NX704K	NX705K	NX706K	NX707K	NX708K	NX709K
Rechts	NX750K	NX751K	NX752K	NX753K	NX754K	NX755K	NX756K	NX757K	NX758K	NX759K

20 | IMPLANTATMATRIX

e.motion® Pro Implantatmatrix - Tibiaimplantate

Tibia UC Pro/PS Pro zementiert

Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX732K	NX733K	NX734K	NX735K	NX736K	NX737K	NX738K
Rechts	NX782K	NX783K	NX784K	NX785K	NX786K	NX787K	NX788K

Tibia-Obturator für UC Pro/PS Pro

Var.:	Ø 14 mm
Standard	NN264K
AS	NN264Z

Tibia Kurzschaft zementfrei

Var.:	Ø 14 mm
Länge mm	12
Standard	NB100K
AS	NB100Z

PEEK Plug

Ø 14 mm

e.motion® Pro Implantatmatrix - Tibiaimplantate

e.motion® UC Pro/PS Pro Tibia-Augmente Medial

			4 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links + Rechts	NX602K	NX603K	NX604K	NX605K	NX606K	NX607K	NX608K

			8 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX622K	NX623K	NX624K	NX625K	NX626K	NX627K	NX628K
Rechts	NX632K	NX633K	NX634K	NX635K	NX636K	NX637K	NX638K

			12 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX662K	NX663K	NX664K	NX665K	NX666K	NX667K	NX668K
Rechts	NX672K	NX673K	NX674K	NX675K	NX676K	NX677K	NX678K

e.motion® UC Pro/PS Pro Tibia-Augmente Lateral

			4 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links + Rechts	NX612K	NX613K	NX614K	NX615K	NX616K	NX617K	NX618K

			8 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX642K	NX643K	NX644K	NX645K	NX646K	NX647K	NX648K
Rechts	NX652K	NX653K	NX654K	NX655K	NX656K	NX657K	NX658K

			12 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX682K	NX683K	NX684K	NX685K	NX686K	NX687K	NX688K
Rechts	NX692K	NX693K	NX694K	NX695K	NX696K	NX697K	NX698K

20 | IMPLANTATMATRIX

AS e.motion® Pro Implantatmatrix - Femurimplantate

Femur FP/UC zementiert

Var.:	F2	F3	F4	F4N	F5	F5N	F6	F6N	F7	F8
Links	N0502Z	N0503Z	N0504Z	N0817Z	N0505Z	N0818Z	N0506Z	N0819Z	N0507Z	N0508Z
Rechts	N0602Z	N0603Z	N0604Z	N0917Z	N0605Z	N0918Z	N0606Z	N0919Z	N0607Z	N0608Z

AS Femur PS Pro zementiert

Var.:	F2	F3	F4N	F4	F5N	F5	F6N	F6	F7	F8
Links	NX700Z	NX701Z	NX702Z	NX703Z	NX704Z	NX705Z	NX706Z	NX707Z	NX708Z	NX709Z
Rechts	NX750Z	NX751Z	NX752Z	NX753Z	NX754Z	NX755Z	NX756Z	NX757Z	NX758Z	NX759Z

AS e.motion® Pro Implantatmatrix - Tibiaimplantate

Tibia UC Pro/PS Pro zementiert

Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX732Z	NX733Z	NX734Z	NX735Z	NX736Z	NX737Z	NX738Z
Rechts	NX782Z	NX783Z	NX784Z	NX785Z	NX786Z	NX787Z	NX788Z

AS e.motion® Pro Implantatmatrix - Tibiaimplantate

Rotationsachse für Meniskuskomponente SW 4,5

Var.:								
Höhe mm	10	12	14	16	18	20	22	24
UC	NR801Z	NR811Z	NR821Z	NR831Z	NR841Z	NR851Z		
PS	NB800Z	NB810Z	NB820Z	NB830Z	NB840Z	NB850Z	NB860Z	NB870Z

AS e.motion® UC Pro/PS Pro Tibia-Augmente Medial

			4 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links + Rechts	NX602Z	NX603Z	NX604Z	NX605Z	NX606Z	NX607Z	NX608Z

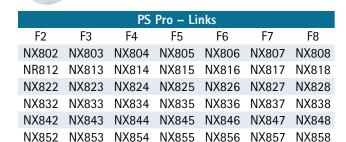
			8 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX622Z	NX623Z	NX624Z	NX625Z	NX626Z	NX627Z	NX628Z
Rechts	NX632Z	NX633Z	NX634Z	NX635Z	NX636Z	NX637Z	NX638Z

			12 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX662Z	NX663Z	NX664Z	NX665Z	NX666Z	NX667Z	NX668Z
Rechts	NX672Z	NX673Z	NX674Z	NX675Z	NX676Z	NX677Z	NX678Z

AS e.motion® UC Pro/PS Pro Tibia-Augmente Lateral

			4 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links + Rechts	NX612Z	NX613Z	NX614Z	NX615Z	NX616Z	NX617Z	NX618Z

			8 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX642Z	NX643Z	NX644Z	NX645Z	NX646Z	NX647Z	NX648Z
Rechts	NX652Z	NX653Z	NX654Z	NX655Z	NX656Z	NX657Z	NX658Z


			12 mm				
Var.:	T2	T3	T4	T5	T6	T7	T8
Links	NX682Z	NX683Z	NX684Z	NX685Z	NX686Z	NX687Z	NX688Z
Rechts	NX692Z	NX693Z	NX694Z	NX695Z	NX696Z	NX697Z	NX698Z

20 | IMPLANTATMATRIX

e.motion® Pro Implantatmatrix - Meniskuskomponenten

			UC Pro	Links			
Var.:	F2	F3	F4	F5	F6	F7	F8
10	NX402	NX403	NX404	NX405	NX406	NX407	NX408
12	NX412	NX413	NX414	NX415	NX416	NX417	NX418
14	NX422	NX423	NX424	NX425	NX426	NX427	NX428
16	NX432	NX433	NX434	NX435	NX436	NX437	NX438
18	NX442	NX443	NX444	NX445	NX446	NX447	NX448
20	NX452	NX453	NX454	NX455	NX456	NX457	NX458

			UC Pro -	Rechts			
Var.:	F2	F3	F4	F5	F6	F7	F8
10	NX502	NX503	NX504	NX505	NX506	NX507	NX508
12	NX512	NX513	NX514	NX515	NX516	NX517	NX518
14	NX522	NX523	NX524	NX525	NX526	NX527	NX528
16	NX532	NX533	NX534	NX535	NX536	NX537	NX538
18	NX542	NX543	NX544	NX545	NX546	NX547	NX548
20	NX552	NX553	NX554	NX555	NX556	NX557	NX558

PS Pro – Rechts									
F2	F3	F4	F5	F6	F7	F8			
NX902	NX903	NX904	NX905	NX906	NX907	NX908			
NX912	NX913	NX914	NX915	NX916	NX917	NX918			
NX922	NX923	NX924	NX925	NX926	NX927	NX928			
NX932	NX933	NX934	NX935	NX936	NX937	NX938			
NX942	NX943	NX944	NX945	NX946	NX947	NX948			
NX952	NX953	NX954	NX955	NX956	NX957	NX958			

e.motion® Pro Implantatmatrix - Schäfte

Tibia Verläng. Schaft zementiert

Var.:	Ø 10 mm		Ø 12 mm		Ø 14 mm	
Länge mm	52	92	52	92	52	92
Standard	NX060K	NX061K	NX062K	NX064K	NX063K	NX065K
AS	NX060Z	NX061Z	NX062Z	NX064Z	NX063Z	NX065Z

Tibia Schäfte zementfrei

Var.:	Ø 10 mm		Ø 12 mm		Ø 14 mm	
Länge mm	92	132	92	132	92	132
Standard	NX082K	NX083K	NX084K	NX086K	NX085K	NX087K
AS	NX082Z	NX083Z	NX084Z	NX086Z	NX085Z	NX087Z

21 | LITERATUR

- (1) Eiff W. Prozessoptimierung und Kostensenkung. HCM. 2016 Dec;7:34-7.
- (2) Grupp TM, Schroeder C, Kyun Kim T, Miehlke RK, Fritz B5, Jansson V, Utzschneider S. Biotribology of a mobile bearing posterior stabilised knee design—effect of motion restraint on wear, tibio–femoral kinematics and particles. J Biomech. 2014 Jul 18;47(5):2415–23. Epub 2014 Apr 30.
- (3) Scheibel MT, Thomas M, von Salis-Soglio G. Operative Zugangswege in der Primärendoprothethik des Kniegelenks. Orthopäde. 2002;31:934-46. doi:10.1007/s00132-002-0383-0.
- (4) Amirfeyz R, Bannister G. The effect of bone porosity on the shear strength of the bone-cement interface. Int. Orthop. 2009 Jun;33(3):843-6.
- (5) Seeger JB1, Jaeger S, Bitsch RG, Mohr G, Rohner E, Clarius M. The effect of bone lavage on femoral cement penetration and interface temperature during Oxford unicompartmental knee arthroplasty with cement. J Bone Joint Surg Am. 2013 Jan 2;95(1):48–53.
- (6) Schlegel UJ1, Puschel K, Morlock MM, Nagel K. An in vitro comparison of tibial tray cementation using gun pressurization or pulsed lavage. 2014 May;38(5):967-71.
- (7) Norton MR, Eyres KS. Irrigation and suction technique to ensure reliable cement penetration for Total Knee Arthroplasty. J Arthroplasty. 2000 Jun;15(4):468-74.
- (8) British Orthopaedic Association and British Association for Surgery of the Knee. Knee Replacement: a guide to good practice: London: British Orthopaedic Association.
- (9) Vaninbroukx M, Labey L, Innocenti B, Bellemans J. Cementing the femoral component in total knee arthroplasty: which technique is the best? Knee. 2009 Aug;16(4):265-8. doi: 10.1016/j.knee.2008.11.015.
- (10) De Baets T, Waelput W, Bellemans J. Analysis of third body particles generated during Total Knee Arthroplasty: is metal debris an issue? Knee. 2008 Mar;15(2):95-7. 2011.

NOTIZEN

B. Braun Deutschland GmbH & Co. KG Tel.: (0 56 61) 9147-70 00 E-Mail: info.de@bbraun.com www.bbraun.de Betriebsstätte: Tuttlingen Am Aesculap-Platz 78532 Tuttlingen
Hersteller nach MDD 93/42/EWG

PulsaClean:
Guangzhou Clean Medical Products | Manufacturing Corp.
No. 9 Guangcong Road | 510990 Conghua Development District | Guangzhou | China

OSARTIS GmbH | Auf der Beune 101 | 64839 Münster | Deutschland

BonOs, EASYMIX:

Die Hauptproduktmarke "Aesculap" und die Produktmarken "Aesculap OrthoTray", "Aesculap Reset", "e.motion", "OrthoPilot" und "Plasmapore" sind eingetragene Marken der Aesculap AG.

Technische Änderungen vorbehalten. Dieser Prospekt darf ausschließlich zur Information über unsere Erzeugnisse verwendet werden. Nachdruck, auch auszugsweise, verboten.