
Aesculap Orthopaedics Columbus®

Knee system

Operating technique

Columbus [®] – Operating technique	Page	
Preoperative planning	4	
Preparing the tibia	5	
Checking the tibia resection	7	
Measuring the extension and flexion gap	8	
Resection of the distal femur	9	
Determining the size of the femoral implant	11	
Completing the femoral resection	13	
Measuring the extension and flexion gap	14	
Determining the size of the tibial component	15	
Preparing the patella	16	
Trial reposition	17	
Posterior stabilised PS version	18	
Final preparation of the tibia stem	20	
Definitive implantation	23	
Columbus [®] implant sizes	24	
Columbus [®] instrumentation		
	26	
Columbus [®] ordering information	33	

Coumbus

Preoperative planning

The Columbus[®] knee system provides x-ray templates which help the surgeon to define the following parameters:

- > Angle between the anatomical and the mechanical femoral axis
- Resection height of the intact tibia joint surface
- Entry points for the intramedullary alignment rods
- Size of the implants
- Position of the osteophytes

The following x-rays are required to conduct the x-ray analysis:

- Knee joint in a.p.-projection: knee in extension, centred over the distal patella.
- Knee joint in lateral projection: knee in 30° flexion, centred over the distal patella.
- Whole leg x-ray in supported monopodal stance.
- Patella-tangential x-ray: knee in 30° flexion, caudocranial radiation, centred over distal patella.

The Columbus® x-ray templates must be used.

The angle between the mechanical and anatomical femoral axis is measured using the whole leg template. The joint centre, joint line and mechanical femoral axis are visible on the x-ray template and are brought into alignment with the x-ray image. The dotted line which mostly closely corresponds to the anatomical axis gives the correct angle. To define the position of the tibia resection, the whole leg template is brought into alignment with the x-ray. The resection height is given by the scale from 10 -22 mm. The depiction of the intramedullary femur alignment rod on the whole leg template makes it possible to check the position and entry point of the rod by comparing it with the x-ray image. If pronounced bone deformities are present, it is not always possible to use the alignment rod. A complete set of x-ray templates is provided for preoperative definition of the appropriate implant sizes. Localisation of osteophytes allows their easy removal, increasing joint mobility.

The result of the preoperative planning should be documented in the patient's records.

1. Preparing the tibia

The Columbus[®] knee system provides for two different alignment procedures:

- Extramedullary alignment
- Intramedullary alignment

The extramedullary alignment instrument is assembled at the operating table and brought into position parallel to the tibial axis.

Rotational alignment is carried out with the extension of the malleolar clamp. This orientates itself to the second metatarsal bone.

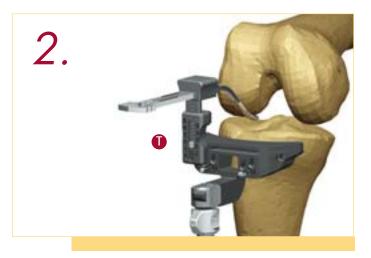
The alignment instrument offers the possibility of adjusting the tibial cutting block in all planes:

- Height adjustment (A)
- Alignment in the sagittal plane (B)
- Varus/valgus alignment (C)

Height adjustment

The resection height is defined in the preoperative planning. The goal is to remove any defect on the tibia joint surface as completely as possible in order to create a bed for the tibial plateau on intact bone. The probe (T) is set to the defined height and introduced into the cutting slot. The height of the extramedullary alignment instrument is then decreased by pulling the lever (1) until the probe comes into contact with a point corresponding to the joint line.

Please note: the polyethylene inlay already has a 3° posterior slope.


2 Alignment in the sagittal plane

Alignment in the sagittal plane (parallel to the mechanical axis) is achieved by pulling the lever (2). The distance between the lines on the malleolar clamp corresponds to a posterior slope of 1° with a tibial length of 40 cm.

3 Varus/valgus alignment

Pressing the lever (3) pushes the slide in the malleolar clamp in a mediolateral direction. The distance between each line on the scale corresponds to a 1° alteration with a tibial length of 40 cm.

Coumbus

2. Intramedullary alignment

The entry point into the tibia medullary cavity is prepared using a broach in accordance with the preoperative planning. It generally lies behind the anterior cruciate ligament insertion.

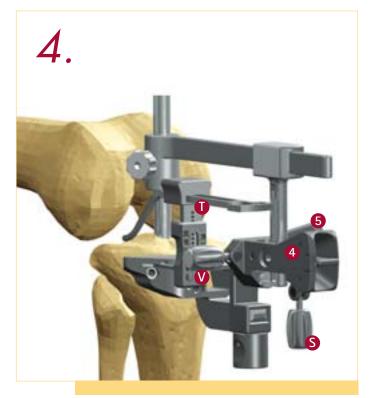
The medullary cavity is opened up with the \emptyset 9 mm drill. The \emptyset 8 mm intramedullary tibia rod with its special design to minimise the risk of embolism is carefully introduced into the medullary cavity up to the indicator marking using the T-handle.

The intramedullary alignment instrument is assembled and fixed onto the intramedullary tibia rod.

Just as with the extramedullary system, this alignment system version also offers the possibility of adjusting the tibia cutting block in all planes.

Height adjustment

The resection height is defined in the preoperative planning. The probe (T) is set to the defined height and introduced into the cutting slot.


The intramedullary alignment instrument is lowered on the intramedullary tibia rod until the probe comes into contact with the point of the original joint line.

2 Alignment in the sagittal plane

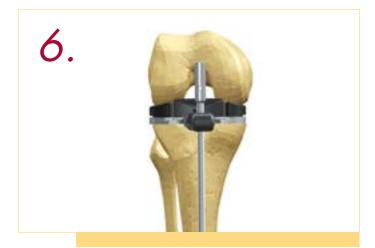
The value of the tibia slope can be read on the scale (4). Alignment in the sagittal plane (parallel to the mechanical axis) is achieved by turning the adjustment screw (S).

3 Varus/valgus alignment

Varus/valgus alignment is achieved by turning the adjustment screw (V). The alignment chosen can be read on the scale (5).

3. Resection of the tibia plateau

The cutting block is fixed to the bone with 4 threaded pins as follows. Two headless threaded pins are inserted into the holes marked "O". Two other threaded pins with heads are then inserted into the convergent holes to secure the cutting block against movement during resection.


After the extramedullary or intramedullary alignment instruments have been removed, the resection is performed using a 1,27 mm thick sawblade. This step must be carried out very carefully, since the posterior cruciate ligament must not be damaged. The resection is normally at a slope of 0°.

Checking the tibia resection height (optional)

The height of the resection can be checked by inserting a trial tibia plateau with a trial gliding surface. This makes it possible to establish whether the flexion gap is of equal size and wide enough medially and laterally.

Please note: If the gaps are asymmetric, ligament release on the narrower side should be considered. This should not be undertaken if the asymmetry is caused by a bone defect of the dorsal femoral condyle.

Checking the mechanical tibial axis (optional)

With a trial tibia plateau in place, the axis can be checked as follows. The handle must be attached to the trial tibia plateau. The measuring rod with the socket for the second measuring rod can be inserted into the handle, and the second rod subsequently placed into the socket.

The axis is checked by comparing the position of the measuring rod to the midpoint of the ankle joint (using the C bow).

4. Measuring the extension and flexion gap

After resection of the tibia plateau it is advisable to check the ligamentary tension. To do this the osteophytes on the tibia head and the femoral condyles must be completely removed. This measurement makes it possible to calculate the resection height on the distal femur (the height to aim at is 9 mm resection on the intact condyle).

- Measure flexion gap (FG)
- Measure extension gap (EG)
- Calculate distal resection height = 9 mm EG + FG

The size of the flexion and extension gaps medially and laterally is read on the distractor. The number read is the one on the movable shoe level with the end of the sleeve.

Please note: If there is mediolateral asymmetry (more than 3 mm), ligament release should be performed on the narrower side (medial for varus malposition, lateral for valgus).

Following the ligament release the flexion and extension gaps should be re-measured and the release procedure repeated if necessary. A mediolateral difference of 2 mm is acceptable.

Example: mediolateral asymmetry

Medial measurement 6 mm and lateral measurement 12 mm: medial release until medial measurement is 9 – 10 mm and lateral measurement is 12 mm.

Planning the resection of the distal femur

The distal femur prosthesis is 9 mm thick for all sizes. Thus the calculation for the distal resection height is: 9 mm - EG + FG.

If a difference in size exists between the flexion and extension gaps ($\neq 0$) there are several possibilities for resolving this. The extension gap can be adjusted to the flexion gap by max. $\pm 2 \text{ mm}$ by altering the distal femur resection height. Alternatively, the flexion gap can be adapted to the extension gap by choosing a smaller or larger femoral implant (this is a better method, since it preserves the important joint line). Further possibilities exist in building up the defective distal femoral condyle (e.g. with bone).

Example: asymmetrical flexion and extension gaps

FG 6 mm symmetrical and EG 12 mm symmetrical: select a smaller femoral component, taking account of the box size.

From F5 to F4: FG 6 mm + 4 mm (box) = FG 10 mm / EG 12 mm

Example: calculating distal resection height

Distal resection height: 9 mm - EG 12 mm + FG 10 mm = 7 mm

Measurements in [mm]

Size	AP	Box	Difference-	Difference+
F1	50	34	0	3
F2	53	37	3	3
F3	56.5	40	3	3.5
F4	60.5	43.5	3.5	4
F5	65	47.5	4	4.5
F6	70	52	4.5	5
F7	75.5	57	5	0

5. Resection of the distal femur

The entry point in the femoral medullary cavity is prepared using a broach in accordance with the preoperative planning.

The medullary canal is opened up with a \emptyset 9 mm drill. The \emptyset 8 mm intramedullary femur rod with its special design to minimise the risk of embolism is carefully introduced into the medullary cavity using the T-handle.

The holding system for the femoral cutting block is pushed onto the intramedullary tibial rod.

This system offers the possibility of varus /valgus adjustment in 1° intervals as required by the preoperative planning. The adjustment range extends to 11°.

The defined distal resection height is set by adjusting the cutting block holder. Resections from 3 mm to 17 mm are possible. The normal distal resection height should be 9 mm (= thickness of the distal femur implant). A deviation from this can occur as a result of step 4.

The femoral cutting block is placed into the receiving socket on the holding system.

Checking the mechanical leg axis (optional)

The axis can be checked by placing the measuring rod holder into the slit on the femoral cutting block. The measuring rod with the socket for the second measuring rod can then be inserted into the holder and the second measuring rod fixed into the socket.

The axis is checked by comparing the position of the measuring rod to the midpoint of the femoral head (using the C bow).

The cutting block is fixed onto the bone using threaded pins. Two headless threaded pins are inserted into the holes marked "O". Two other threaded pins with heads are then inserted into the convergent holes to stop the cutting block slipping up the femur.

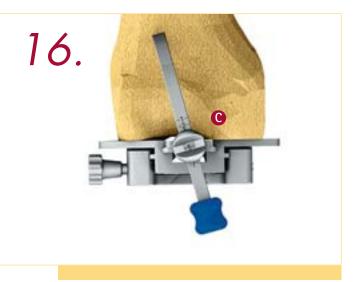
The holding system and the intramedullary femur rod are removed, leaving only the cutting block fixed to the bone.

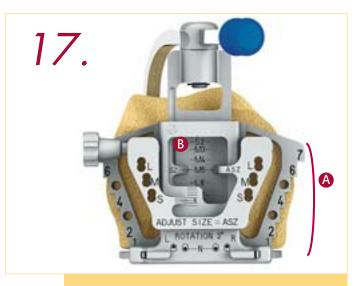
Resection of the distal femur is performed using a 1,27 mm thick sawblade through the cutting slit. To avoid damaging the tibia plateau, the tibia protection plate is used. If necessary, the cutting block can be switched to the "-2" and "-4" holes to repeat the resection. The headless pins are left in place until the flexion and extension gaps have been measured, making it possible to repeat the resection if necessary without having to re-align the cutting block. They should not be subjected to mechanical strain.

Obligatory: using the distractor it is possible to establish whether an adequate joint gap has been achieved in extension (see "Measuring the extension and flexion gap using the retracting forceps as a distance block" page 14).

6. Determining the size of the femoral implant

The instrument for determining the implant size is placed on the distal resection surface and brought into contact with the posterior condyles. It is then aligned mediolaterally with the aim of achieving the greatest possible congruence with the distal femoral resection surface.


The gradations on the side of the instrument numbered 1 – 7 (A) indicate the respective femur size and permit a good mediolateral match.


The size of the femoral prosthesis can be read on the distal side from the SZ (Size) indicator (B). The movable probe is used to establish the point on the anterior lateral cortex at which the femoral surface implant should end. The size is also indicated on the top of the probe (C).

The L, M and S (Large, Medium and Small) holes are the guide holes for drilling the holes for the two holding pegs on the APC cutting blocks. The cutting blocks also carry the respective L, M or S indicator, as given below:

Range	Cutting block size	
L	6, 7	
Μ	3, 4, 5	
S	1, 2	

7. Adjusting the rotation of the femoral component

If the plates are correctly lying on the dorsal condyles, positioning the probe on the ventral femoral cortex gives the size of the femoral component (SZ). If this is a full size, the indicator (S) must be at the "N (Neutral)" position. If the SZ indicator shows an in-between size, the size to be selected must be adjusted with the positioning screw (A). "Adjust Size (ASZ)" is adjusted using a separate mechanism, which is fixed using the side screw (A).

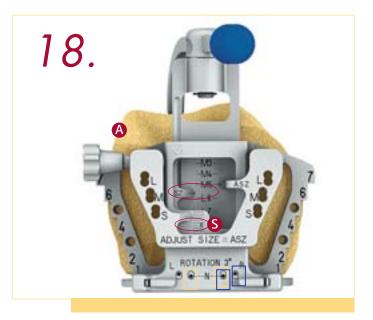
The resection on the anterior cortex is adjusted by moving the position of the drilling holes. This movement can be read in millimetres on the lower scale (S).

Please note: always tighten the screw (A) firmly after adjustment, if necessary with a hexagonal socket screwdriver.

Examples:

no external rotation

Indicator is on full size 5. Implantation: drill in the two lower M holes. With this setting, 8 mm of bone will be resected on the posterior side.


with 3° external rotation

Depending on whether the right or left leg is being operated, one hole will be drilled in the lower hole and the second hole on the opposite side will be drilled in the upper hole under "Rotation 3°" on the size instrument, as illustrated. The example shown is for a right leg.

8. Selecting the femur size

Points for consideration in selecting the size of the femoral component are:

- Avoiding the implant undercutting or protruding from the femoral cortex ventrally: undercutting carries a risk of fracture and protrusion can increase retropatellar pressure.
- Matching the flexion gap to the extension gap: the drilling holes define the position of the APC cutting block. Subsequently changing the size of the APC cutting block makes it possible to alter the flexion gap (see table on page 8). In the choice of component, asymmetries between FG and EG arising from step 4 must be taken into account, bearing the drilling hole classification (L, M or S). If the size change means changing into another size range, the holes must be drilled again in this range. In case of a change to a smaller femur size, the already existing holes can not be used. Also not in the same group. The instrument for determining the size has to be attached once again on the distal cut surface. Contact between the two dorsal shoes and the cut of dorsal bone is requested. The ventral probe has to be in contact with the cut ventral surface. Using the separate mechanism "Adjust Size (ASZ)", the device is moved ventral to the next smaller size. The mechanism is fixed in this position by screw (A). The new holes have to be drilled in the correct group.

Example:

From Step 4: FG 10 mm; EG 12 mm Height of distal femur resection = 7 mm

From Step 7: femur size 5, S indicator: N Set drilling holes at "M" and apply APC cutting block size 4.

Result: symmetry between FG and EG

9. Completing the femoral resection

The dorsal resection is performed first, using the appropriate APC cutting block. The flexion and extension gaps are subsequently checked for adequate height (see "Measuring the extension and flexion gap using the retracting forceps as a distance block" page 14). If the results are satisfactory, the anterior pins can be removed. The three remaining resections are then carried out using the APC cutting block.

Obligatory: the four remaining resections (anterior and posterior resection and anterior and posterior resection of the slanting surfaces) are performed in one set-up using the APC cutting block which corresponds to the selected femur size.

The two pegs on the cutting block are guided into the predrilled holes so that the "ANT" marking for the anterior resection on the APC cutting block is visible. Then the cutting block is fixed onto the distal resection surface with two converging threaded pins with heads. Care must be taken to ensure that the cutting block is lying flat on the distal resection surface. Two handles can be attached for additional stabilisation by hand.

The position and depth of the resections can be checked using the resection depth gauge.

It is advisable to use the tibia protection plate to avoid damaging the tibia plateau.

The four femoral resections are performed using a 1,27 mm thick sawblade through the cutting slits.

20

Coumbus

Measuring the extension and flexion gap using the retracting forceps as a distance block

This measurement allows the height of the polyethylene inlay to be established, which also indicates whether a corrective resection of the tibia is necessary.

Please note: the thickness of the retracting forceps with closed plates is 6 mm.

Retraction in extension for a distal femoral resection of 9 mm.

Example:

Tibial resection 10 mm + 9 mm femoral resection = 19 mm retraction

PE height extension gap (EG): EG - 9 mm

Please note: the polyethylene heights are as follows: CR/RP 10-16 mm, PS 10-20 mm.

Extension gap	PE height	10 mm	12 mm	14 mm	16 mm	18 mm	20 mm
Retraction	CR/RP:	10+9=19 mm	12+9=21 mm	14+9=23 mm	16+9=25 mm		
Retraction	PS:	10+9=19 mm	12+9=21 mm	14+9=23 mm	16+9=25 mm	18+9=27 mm	20+9=29 mm

Retraction in flexion for a dorsal femoral resection of 8 mm (femoral cutting block setting "N" neutral).

Example:

Tibial resection 10 mm + 8 mm dorsal femoral resection = 18 mm retraction

PE height flexion gap (FG): FG – 8 mm

Please note: the polyethylene heights are as follows: CR/RP 10-16 mm, PS 10-20 mm.

Flexion gap	PE height	10 mm	12 mm	14 mm	16 mm	18 mm	20 mm
Retraction	CR/RP:	10+8=18 mm	12+8=20 mm	14+8=22 mm	16+8=24 mm		
Retraction	PS:	10+8=18 mm	12+8=20 mm	14+8=22 mm	16+8=24 mm	18+8=26 mm	20+8=28 mm

Possibilities for solving FG / EG asymmetries

Symmetrical EG < 19 mm and FG < 18 mm: corrective resection of the tibia.

 $FG > EG \rightarrow$ distal corrective resection of the femur (proximalises the joint line).

 $EG > FG \rightarrow$ build up the distal femoral condyles or select a smaller femoral prosthesis and a higher plateau.

10. Determining the size of the tibial component

The trial plateau is selected which best matches the resection surface. Five full sizes and four plus sizes, which are 3/4 mm longer in AP, are available for this purpose. The trial gliding surface is placed on the trial plateau, which is connected to the handle. The trial gliding surface must be selected to match the joint gap measured in extension and flexion.

Trial gliding surfaces for the rotating platform:

before the RP trial gliding surfaces are used, the RP adaptor plate must first be placed on the trial tibial plateau.

Rotational alignment of the tibial component

Rotational alignment of the tibial plateau is carried out according to the ventral marking. This should point to the transition between the central and medial thirds of the patellar tendon insertion.

Alternatively, a connecting line between the insertion of the posterior cruciate ligament and the middle of the patellar tendon insertion can be used for orientation.

Rotational alignment can also be achieved functionally using the femoral component after moving the loose tibial plateau from extension into flexion.

An internal rotation position should be avoided in all circumstances.

As an option, it is possible to make a mark on the ventral bone. The mark has to be in the position of the implant axis. This makes it easier to find the defined position later on.

11. Preparing the patella

The thickness of the patella is measured using the patella forceps. This thickness should not be exceeded after implantation of the patella rear surface (see table on page 25). The aim should be to achieve a reduction in patella thickness following implantation.

The forceps is set to the chosen resection height.

The resection is performed through the cutting slot.

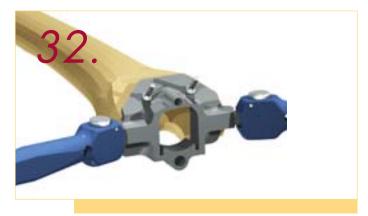
The saw attachment is removed. The triple drilling sleeve is attached and the peg holes are drilled with the ø 6 mm trip drill. The size of the patella is established with the trial patella implants.


The trial femoral prosthesis is inserted with the femur implant holder and aligned mediolaterally. Then the trial tibia plateau, carrying the trial gliding surface and with the handle attached, is fixed onto the tibial resection surface in the optimum position covering the cortex.

Following this procedure it is advisable to test the entire joint function with the patella in its anatomical position or with a trial patella implant.

Alignment should be checked in flexion and extension by again inserting the extramedullary measuring rods into the handle attached to the tibial plateau. The position of the measuring rod is checked in relation to the midpoint of the femoral head and the ankle joint (using the C bow).

The peg holes for the femoral implant are drilled with the Ø 6 mm trip drill. They determine the final position of the femoral implant. Therefore it is strongly recommended that these holes are only drilled after the joint function test has been carried out.



13. Posterior stabilised PS version

To perform the femoral resections for the PS version, the trial femoral implant and the trial gilding surface must be removed. The trial tibia plateau can remain on the bone.

The appropriately sized PS preparation guide is selected (the size of the femoral component) and inserted with its two pegs in the peg holes for the femoral component. It should then be pressed firmly onto the bone using the two removable handles. The guide is fixed to the bone with two threaded pins with heads.

The drilling guide for the \emptyset 14 mm drill is applied so that its peg fits into the lower central hole of the PS preparation guide.

It is moved in both a lateral and a medial direction in order to drill two holes.

Then the cutting guide for the \emptyset 22.5 mm cutter is attached and the bone is milled with the cutter up to its limit stop.

The chisel is connected to the handle. The two slots in the PS preparation guide serve to guide the chisel, which is knocked in up to its limit stop, with its cutting edge on the outside.

To check the intercondylar preparation, the appropriately sized PS trial femoral box template is selected and placed into position with the holder.

Correct positioning is confirmed through the equal height of the trial template and the distal resection as well as contact between the two pegs and the dorsal slanting resection.

38.

*

14. Final preparation of the tibia stem

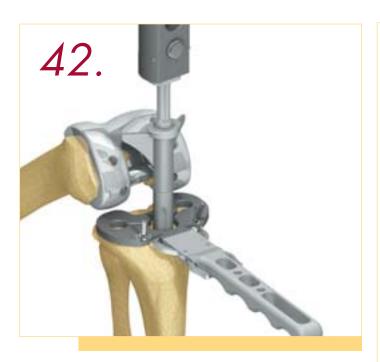
The trial tibia plateau is fixed into the desired position with short threaded pins with heads and additionally stabilised with the handle. The cylindrical drilling sleeve, of which there is one for the Ø 12 mm and one for the Ø 14 mm stem, should be placed on the trial tibia plateau.

The drilling sleeve is fixed into position with a holding clamp. Sizes T1 to T3+ tibia plateaus are implanted with a \emptyset 12 mm stem as standard and sizes T4 to T5 with a \emptyset 14 mm stem.

The hole for the tibia plateau stem is drilled with the appropriate drill:

- ø 12 mm or ø 14 mm trip drill if the tibia plateau with the closing screw is being used.
- ø 12 mm or ø 14 mm drill with two laser markings for short or long extension stems.

To prepare for the wing stem, the guide for the wing chisel is placed into position on the trial tibia plateau. The wing chisel corresponding to the tibia plateau (T1/T1+, T2/T2+, T3/T3+, T4/T4+, T5) is selected and knocked in up to the limit stop.


15. Implanting the trial tibial prosthesis

The appropriate trial tibia wing stem, connected to an extension stem if used, is screwed onto the inserter and implanted.

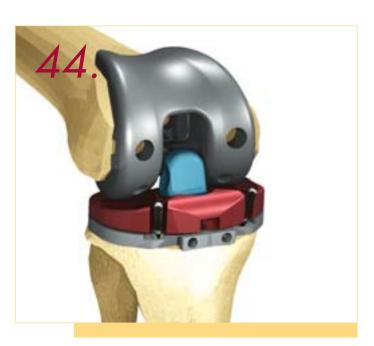
In order to do this, the screw pins in the trial tibia plateau must be removed and the plateau held with the handle attached.

Once the pins have been inserted to fix the trial tibia plateau in position, the holder for the PS femoral box trial template can be used to insert the trial tibia wing stem.

Then the corresponding trial tibia gliding surface is fixed into the trial plateau – together with the PS peg for the PS version.

16. Trial PS prostheses

For the PS version the appropriate trial femoral prosthesis is connected to the PS femoral box and implanted.


The trial tibia gliding surface is connected to the PS peg using the holder for the PS trial femoral box template.

The PE gliding surfaces are available in sizes ranging from 10 mm to 16 mm in 2 mm increments – for the PS version the range is from 10 mm – 20 mm. A 4 mm test plateau is therefore supplied for each of the five trial tibia plateaux. The 18 mm size is achieved using the 4 mm test plateau + 14 mm trial gliding surface, the 20 mm size using the 4 mm test plateau + 16 mm trial gliding.

The knee kinematics and anterior-posterior stability are checked with the help of the trial prostheses.

The following sequence is recommended for trial prosthesis explantation at $> 90^{\circ}$ flexion:

- PS peg
- Trial gliding surface
- Trial femoral prosthesis
- Trial tibia wing stem with/without extension stem
- 🕨 Trial tibia plateau

17. Definitive implantation

The Columbus^{*} femoral and tibial implants can be implanted with or without cement as desired. The surgeon makes this decision according to the bone quality of the patient.

Because of the congruence between the resection surfaces and the implants, only a small amount of cement should be used. This is particularly important in the posterior regions to prevent cement getting into the periarticular gap.

The following implantation sequence is recommended:

- > Tibia plateau with trial gliding surface
- Femoral component
- Gliding surface
- 🕨 Patella

The tibia plateau is connected to the impactor and brought precisely into the predefined position using the handle.

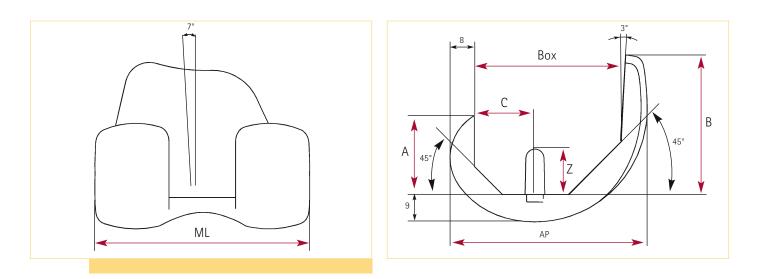
A trial gliding surface should be placed in position to avoid contact between the femoral implant and the surface of the tibia plateau during impaction of the femoral implant.

Please note: when implanting the RP version, ligamentary tension can no longer be checked with the trial RP gliding surface fitted. This is because the height of this gliding surface is less than the height of the PE inlay because the RP adaptor plate is missing.

The inserter with the handle fitted onto it is attached to the femoral implant. The femoral implant is brought into alignment and implanted using the holder. The femoral impactor is used to knock the implant into place.

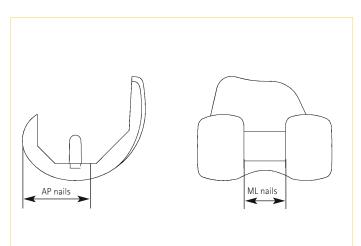
Please note: all cement residue must be removed.

The patella is implanted using the patella preparation forceps and the concave plastic cap, which allows good transmission of forces during the cement hardening process.



18. Columbus[®] implant sizes

The table gives an overview of the most important dimensions of the Columbus® femoral implants

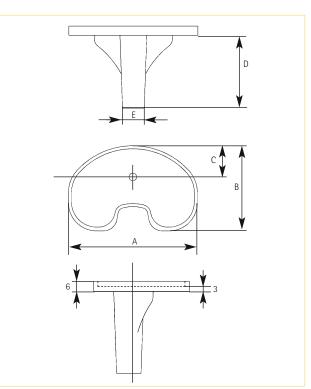


Measurements in [mm]

Size	ML	AP	Box	А	В	С	Peg Z
F1	56	50	34	18.5	34	14	13.5
F2	59	53	37	20	36.5	14.5	15
F3	62.5	56.5	40	21.5	39.5	16	15
F4	66.5	60.5	43.5	23	42.5	17.5	15
F5	71	65	47.5	26	46	20	15
F6	76	70	52	28	49.5	21.5	15
F7	82	75.5	57	30	53.5	23	15

Overview – Table of Columbus[®] femoral implants for combined use with intramedullary nails if required

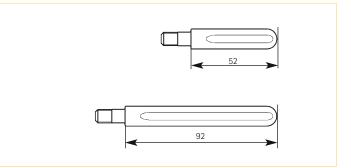
	AP nails CR	AP nails PS	ML nails
F1	22.5	31	18
F2	24	32.5	19
F3	26	34	20.5
F4	28	36	21
F5	30	38	22
F6	32.5	40.5	23
F7	35	42.5	25

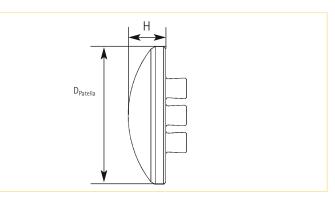


Overview of the most important dimensions for Columbus[®] tibial implants

Measurements in [mm]

	T1/T1+	T2/T2+	T3/T3+	T4/T4+	T5
А	65	70	75	80	85
В	43/46	45/49	48/52	51/55	56
С	15/16	16/17.5	17.5/19	19/20.5	20.5
D	28	33	38	43	48
Е	12.3	12.3	12.3	14.3	14.3

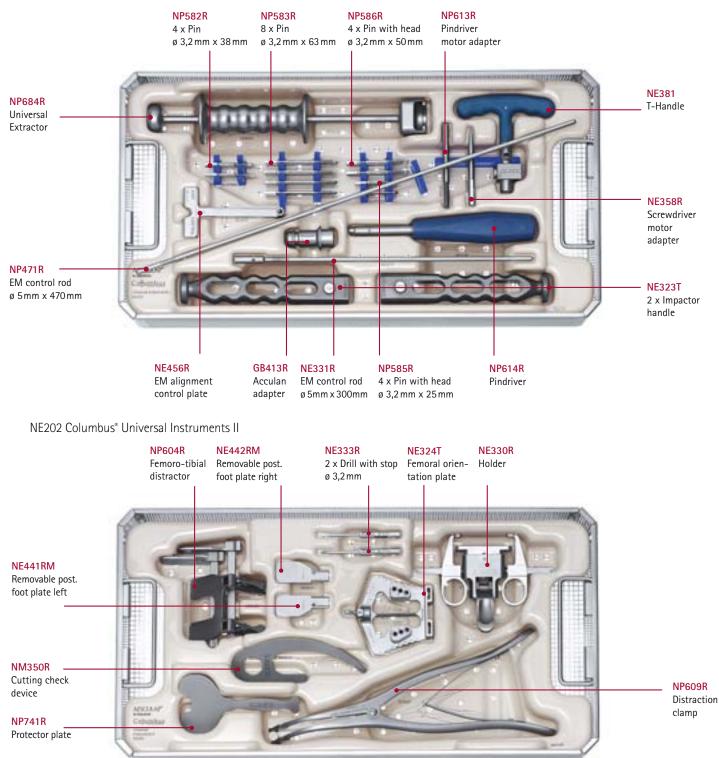

Overview of extension stem lengths [mm]

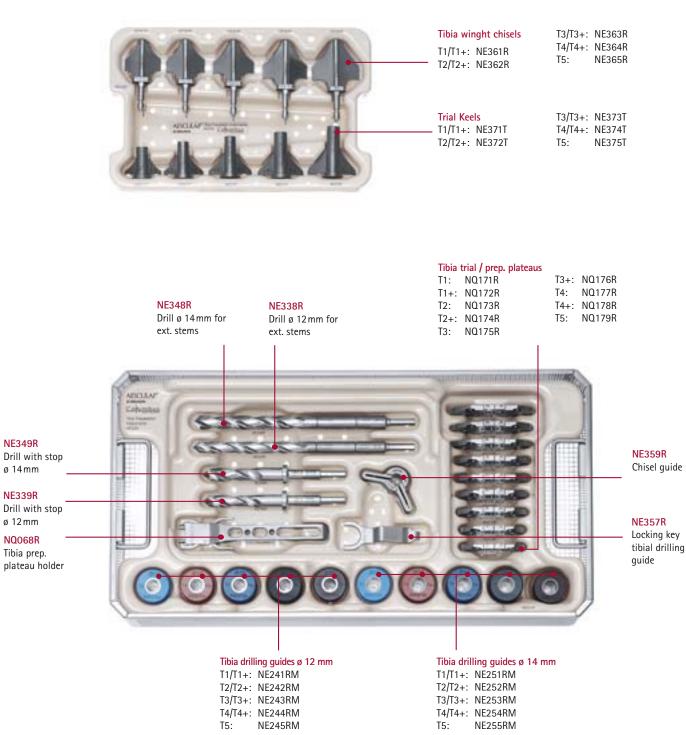

	T1/T1+	T2/T2+	T3/T3+	T4/T4+	T5
D	28	33	38	43	48
D+S stem (Small)	80	85	90	95	100
D+L stem (Large)	120	125	130	135	140

The overall length of the tibia plateau with the respective extension stem is given by the dimension D in the upper table and the stem length Small (52 mm) or Long (92 mm).

Overview of patella sizes

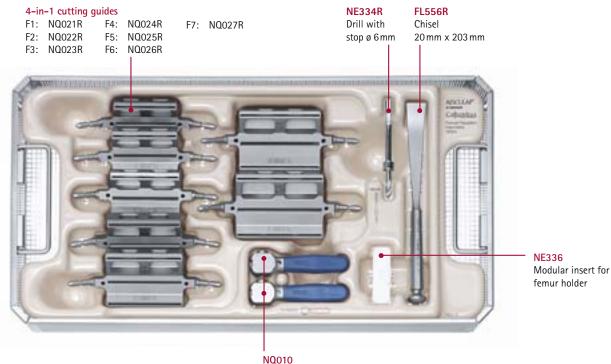
	D _{Patella} x H
Patella P1	ø 27 mm x 7 mm
Patella P2	ø 30 mm x 8 mm
Patella P3	ø 33 mm x 9 mm
Patella P4	ø 36 mm x 10 mm

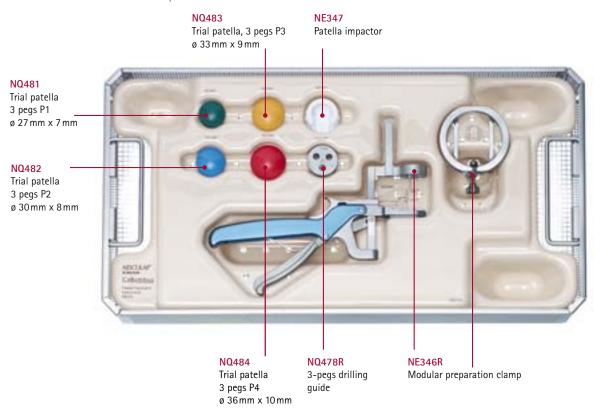



19. Columbus[®] Instrumentation Columbus[®] Complete Set NE300

The NE300 Columbus[®] Knee System offers the surgeon the following modern instrumentation:

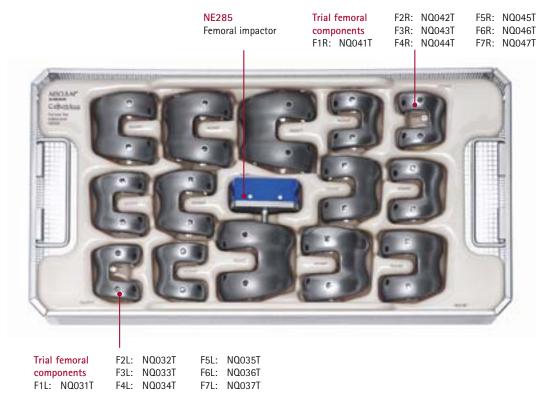
NE201 Columbus® Universal Instruments I

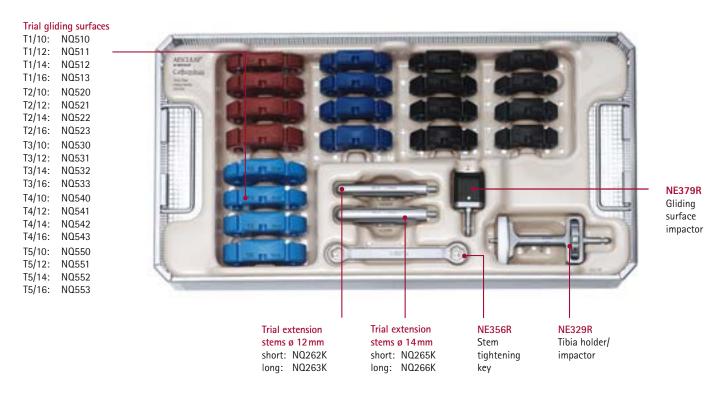




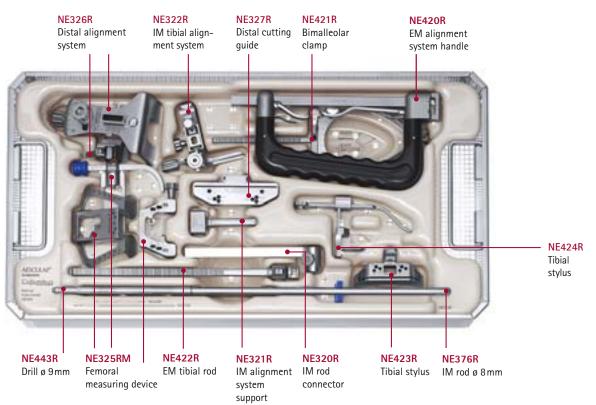
NE204 Columbus[®] Femoral Preparation Instruments

NQ010 2 x Modular handle


NE205 Columbus® Patella Preparation Instruments

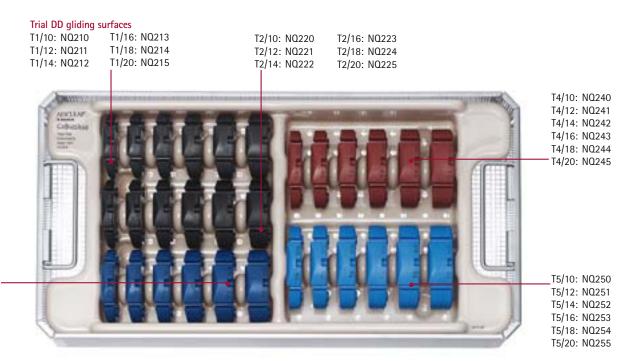

28

NE206 Columbus® Femoral Trial Instruments



NE208 Columbus® Tibial Trial Instruments CR/PS

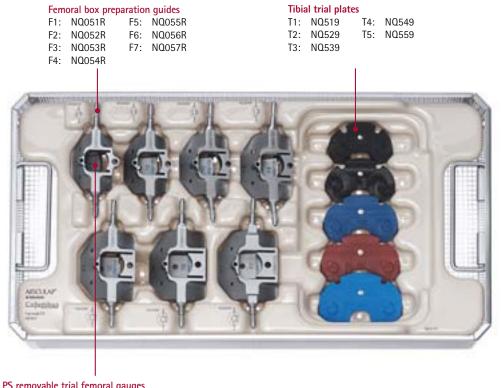
NE209 Columbus® Manual Instruments

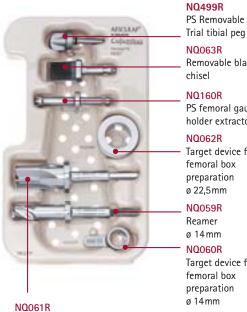


Columbus[®] Supplementary Sets

Modular insert tibia RP gliding surfaces T1: NQ091R T2: NQ092R T3: NQ093R T4: NQ094R NE337 Modular insert for tibia RP holder T5: NQ095R NE284 Tibia plateau impactor Trial gliding surface RP T1/10: NQ310 T2/10: NQ320 T3/10: NQ330 T4/10: NQ340 T5/10: NQ350 T3/12: NQ331 T5/12: NQ351 T1/12: NQ311 T2/12: NQ321 T4/12: NQ341 T1/14: NQ312 T2/14: NQ322 T3/14: NQ332 T4/14: NQ342 T5/14: NQ352 T5/16: NQ353 T1/16: NQ313 T2/16: NQ323 T3/16: NQ333 T4/16: NQ343

NE296 Columbus® Tibial Trial Instruments RP


NE309 Columbus® Tibial Trial Instruments Deep Dish


T3/10: NQ230 T3/12: NQ231 T3/14: NQ232 T3/16: NQ233 T3/18: NQ234 T3/20: NQ235

NE307 Columbus® Femoral PS Instruments

L2 10		ii iem					
F1:	NQ161T	F3:	NQ163T	F5:	NQ165T	F7:	NQ167T
F2:	NQ162T	F4:	NQ164T	F6:	NQ166T		

Trial tibial peg NQ063R Removable blade chisel NQ160R PS femoral gauge holder extractor NQ062R Target device for femoral box preparation ø 22,5mm NQ059R Reamer ø14mm NQ060R Target device for femoral box preparation

Reamer ø 22,5 mm

20. Columbus® ordering information

Femoral Comp	onent CR/RP cemented
NN001K	Columbus [®] CR/RP Femur F1L
NN002K	Columbus [®] CR/RP Femur F2L
NN003K	Columbus [®] CR/RP Femur F3L
NN004K	Columbus [®] CR/RP Femur F4L
NN005K	Columbus [®] CR/RP Femur F5L
NN006K	Columbus [®] CR/RP Femur F6L
NN007K	Columbus [®] CR/RP Femur F7L
NN011K	Columbus [®] CR/RP Femur F1R
NN012K	Columbus [®] CR/RP Femur F2R
NN013K	Columbus [®] CR/RP Femur F3R
NN014K	Columbus [®] CR/RP Femur F4R
NN015K	Columbus [®] CR/RP Femur F5R
NN016K	Columbus [®] CR/RP Femur F6R
NN017K	Columbus [®] CR/RP Femur F7R

Femoral Component CR/RP cementless

NN021K	Columbus [®] CR/RP Femur F1L
NN022K	Columbus [®] CR/RP Femur F2L
NN023K	Columbus [®] CR/RP Femur F3L
NN024K	Columbus [®] CR/RP Femur F4L
NN025K	Columbus [®] CR/RP Femur F5L
NN026K	Columbus [®] CR/RP Femur F6L
NN027K	Columbus [®] CR/RP Femur F7L
NN031K	Columbus [®] CR/RP Femur F1R
NN032K	Columbus [®] CR/RP Femur F2R
NN033K	Columbus [®] CR/RP Femur F3R
NN034K	Columbus [®] CR/RP Femur F4R
NN035K	Columbus [®] CR/RP Femur F5R
NN036K	Columbus [®] CR/RP Femur F6R
NN037K	Columbus [®] CR/RP Femur F7R

Femoral Component PS cemented

NN161K	Columbus [®] PS Femur F1L
NN162K	Columbus [®] PS Femur F2L
NN163K	Columbus [®] PS Femur F3L
NN164K	Columbus [®] PS Femur F4L
NN165K	Columbus® PS Femur F5L
NN166K	Columbus [®] PS Femur F6L
NN167K	Columbus® PS Femur F7L
NN171K	Columbus [®] PS Femur F1R
NN172K	Columbus [®] PS Femur F2R
NN173K	Columbus [®] PS Femur F3R
NN174K	Columbus [®] PS Femur F4R
NN175K	Columbus [®] PS Femur F5R
NN176K	Columbus [®] PS Femur F6R
NN177K	Columbus [®] PS Femur F7R

Tibia plateau CR/PS modular, cemented

NN071K	Columbus [®] CR/PS Tibia Plateau T1
NN072K	Columbus [®] CR/PS Tibia Plateau T1+
NN073K	Columbus [®] CR/PS Tibia Plateau T2
NN074K	Columbus [®] CR/PS Tibia Plateau T2+
NN075K	Columbus [®] CR/PS Tibia Plateau T3
NN076K	Columbus [®] CR/PS Tibia Plateau T3+
NN077K	Columbus [®] CR/PS Tibia Plateau T4
NN078K	Columbus [®] CR/PS Tibia Plateau T4+
NN079K	Columbus [®] CR/PS Tibia Plateau T5

Tibia plate	au CR/PS modular, cementless
NN081K	Columbus [®] CR/PS Tibia Plateau T1
NN082K	Columbus [®] CR/PS Tibia Plateau T1+
NN083K	Columbus [®] CR/PS Tibia Plateau T2
NN084K	Columbus [®] CR/PS Tibia Plateau T2+
NN085K	Columbus [®] CR/PS Tibia Plateau T3
NN086K	Columbus [®] CR/PS Tibia Plateau T3+
NN087K	Columbus [®] CR/PS Tibia Plateau T4
NN088K	Columbus [®] CR/PS Tibia Plateau T4+
NN089K	Columbus [®] CR/PS Tibia Plateau T5

Tibia plateau	RP Rotating Platform modular, cemented
NN271K	Columbus® RP Tibia Plateau T1
NN272K	Columbus [®] RP Tibia Plateau T1+
NN273K	Columbus [®] RP Tibia Plateau T2
NN274K	Columbus [®] RP Tibia Plateau T2+
NN275K	Columbus [®] RP Tibia Plateau T3
NN276K	Columbus [®] RP Tibia Plateau T3+
NN277K	Columbus [®] RP Tibia Plateau T4
NN278K	Columbus [®] RP Tibia Plateau T4+
NN279K	Columbus® RP Tibia Plateau T5

Tibia plateau	RP Rotating Platform modular, cementless
NN281K	Columbus [®] RP Tibia Plateau T1
NN282K	Columbus [®] RP Tibia Plateau T1+
NN283K	Columbus [®] RP Tibia Plateau T2
NN284K	Columbus [®] RP Tibia Plateau T2+
NN285K	Columbus [®] RP Tibia Plateau T3
NN286K	Columbus [®] RP Tibia Plateau T3+
NN287K	Columbus [®] RP Tibia Plateau T4
NN288K	Columbus [®] RP Tibia Plateau T4+
NN289K	Columbus® RP Tibia Plateau T5

Tibia plateau CRA/PSA CR Augmentation/ PS Augmentation modular cemented

NN471K	Columbus [®] CRA/PSA Tibia Plateau T1
NN472K	Columbus [®] CRA/PSA Tibia Plateau T1+
NN473K	Columbus [®] CRA/PSA Tibia Plateau T2
NN474K	Columbus [®] CRA/PSA Tibia Plateau T2+
NN475K	Columbus [®] CRA/PSA Tibia Plateau T3
NN476K	Columbus [®] CRA/PSA Tibia Plateau T3+
NN477K	Columbus [®] CRA/PSA Tibia Plateau T4
NN478K	Columbus [®] CRA/PSA Tibia Plateau T4+
NN479K	Columbus [®] CRA/PSA Tibia Plateau T5

Tibial hemi-spacer with screws

NN563K	Columbus [®] Tibial hemi-spacer T1 4mm RM/LL
NN564K	Columbus [®] Tibial hemi-spacer T1 8mm RM/LL
NN566K	Columbus [®] Tibial hemi-spacer T2 4mm RM/LL
NN567K	Columbus [®] Tibial hemi-spacer T2 8mm RM/LL
NN569K	Columbus [®] Tibial hemi-spacer T3 4mm RM/LL
NN570K	Columbus [®] Tibial hemi-spacer T3 8mm RM/LL
NN572K	Columbus [®] Tibial hemi-spacer T4 4mm RM/LL
NN573K	Columbus [®] Tibial hemi-spacer T4 8mm RM/LL
NN575K	Columbus [®] Tibial hemi-spacer T5 4mm RM/LL
NN576K	Columbus [®] Tibial hemi-spacer T5 8mm RM/LL
NN583K	Columbus [®] Tibial hemi-spacer T1 4mm RL/LM
NN584K	Columbus [®] Tibial hemi-spacer T1 8mm RL/LM
NN586K	Columbus [®] Tibial hemi-spacer T2 4mm RL/LM
NN587K	Columbus [®] Tibial hemi-spacer T2 8mm RL/LM
NN589K	Columbus [®] Tibial hemi-spacer T3 4mm RL/LM
NN590K	Columbus [®] Tibial hemi-spacer T3 8mm RL/LM
NN592K	Columbus [®] Tibial hemi-spacer T4 4mm RL/LM
NN593K	Columbus [®] Tibial hemi-spacer T4 8mm RL/LM
NN595K	Columbus [®] Tibial hemi-spacer T5 4mm RL/LM
NN596K	Columbus [®] Tibial hemi-spacer T5 8mm RL/LM

PE gliding surface CR Cruciate Retaining

NN 110	Columbus [®] CR gliding surface T1/T1+ 10
NN 111	Columbus [®] CR gliding surface T1/T1+ 12
NN 112	Columbus [®] CR gliding surface T1/T1+ 14
NN 113	Columbus [®] CR gliding surface T1/T1+ 16
NN120	Columbus [®] CR gliding surface T2/T2+ 10
NN121	Columbus [®] CR gliding surface T2/T2+ 12
NN122	Columbus [®] CR gliding surface T2/T2+ 14
NN123	Columbus [®] CR gliding surface T2/T2+ 16
NN130	Columbus [®] CR gliding surface T3/T3+ 10
NN131	Columbus [®] CR gliding surface T3/T3+ 12
NN132	Columbus [®] CR gliding surface T3/T3+ 14
NN133	Columbus [®] CR gliding surface T3/T3+ 16
NN140	Columbus [®] CR gliding surface T4/T4+ 10
NN141	Columbus [®] CR gliding surface T4/T4+ 12
NN142	Columbus [®] CR gliding surface T4/T4+ 14
NN143	Columbus [®] CR gliding surface T4/T4+ 16
NN150	Columbus [®] CR gliding surface T5 10
NN151	Columbus [®] CR gliding surface T5 12
NN152	Columbus [®] CR gliding surface T5 14
NN153	Columbus [®] CR gliding surface T5 16

PE gliding surface CR Deep Dish

NN210	Columbus [®] CR Deep Dish gliding surface T1/T1+ 10
NN211	Columbus [®] CR Deep Dish gliding surface T1/T1+ 12
NN212	Columbus [®] CR Deep Dish gliding surface T1/T1+ 14
NN213	Columbus [®] CR Deep Dish gliding surface T1/T1+ 16
NN214	Columbus [®] CR Deep Dish gliding surface T1/T1+ 18
NN215	Columbus [®] CR Deep Dish gliding surface T1/T1+ 20
NN220	Columbus [®] CR Deep Dish gliding surface T2/T2+ 10
NN221	Columbus [®] CR Deep Dish gliding surface T2/T2+ 12
NN222	Columbus [®] CR Deep Dish gliding surface T2/T2+ 14
NN223	Columbus [®] CR Deep Dish gliding surface T2/T2+ 16
NN224	Columbus [®] CR Deep Dish gliding surface T2/T2+ 18
NN225	Columbus [®] CR Deep Dish gliding surface T2/T2+ 20
NN230	Columbus [®] CR Deep Dish gliding surface T3/T3+ 10
NN231	Columbus [®] CR Deep Dish gliding surface T3/T3+ 12
NN232	Columbus [®] CR Deep Dish gliding surface T3/T3+ 14
NN233	Columbus [®] CR Deep Dish gliding surface T3/T3+ 16
NN234	Columbus [®] CR Deep Dish gliding surface T3/T3+ 18
NN235	Columbus [®] CR Deep Dish gliding surface T3/T3+ 20

PE gliding su	Irface UC Ultra Congruent
NN410	Columbus [®] UC gliding surface T1/T1+ 10
NN411	Columbus [®] UC gliding surface T1/T1+ 12
NN412	Columbus [®] UC gliding surface T1/T1+ 14
NN413	Columbus [®] UC gliding surface T1/T1+ 16
NN414	Columbus [®] UC gliding surface T1/T1+ 18
NN415	Columbus [®] UC gliding surface T1/T1+ 20
NN420	Columbus [®] UC gliding surface T2/T2+ 10
NN421	Columbus [®] UC gliding surface T2/T2+ 12
NN422	Columbus [®] UC gliding surface T2/T2+ 14
NN423	Columbus [®] UC gliding surface T2/T2+ 16
NN424	Columbus [®] UC gliding surface T2/T2+ 18
NN425	Columbus [®] UC gliding surface T2/T2+ 20
NN430	Columbus [®] UC gliding surface T3/T3+ 10
NN431	Columbus [®] UC gliding surface T3/T3+ 12
NN432	Columbus [®] UC gliding surface T3/T3+ 14
NN433	Columbus [®] UC gliding surface T3/T3+ 16
NN434	Columbus [®] UC gliding surface T3/T3+ 18
NN435	Columbus [®] UC gliding surface T3/T3+ 20
NN440 NN441 NN442 NN443 NN444 NN445	Columbus [®] UC gliding surface T4/T4+ 10 Columbus [®] UC gliding surface T4/T4+ 12 Columbus [®] UC gliding surface T4/T4+ 14 Columbus [®] UC gliding surface T4/T4+ 16 Columbus [®] UC gliding surface T4/T4+ 20
NN450	Columbus [®] UC gliding surface T5 10
NN451	Columbus [®] UC gliding surface T5 12
NN452	Columbus [®] UC gliding surface T5 14
NN453	Columbus [®] UC gliding surface T5 16
NN454	Columbus [®] UC gliding surface T5 18
NN455	Columbus [®] UC gliding surface T5 20

Ť

Coumbus knee system

PE gliding surface RP Rotating Platform

NN310	Columbus [®] RP gliding surface T1/T1+ 10
NN311	Columbus [®] RP gliding surface T1/T1+ 12
NN312	Columbus [®] RP gliding surface T1/T1+ 14
NN313	Columbus [®] RP gliding surface T1/T1+ 16
NN320	Columbus [®] RP gliding surface T2/T2+ 10
NN321	Columbus [®] RP gliding surface T2/T2+ 12
NN322	Columbus [®] RP gliding surface T2/T2+ 14
NN323	Columbus [®] RP gliding surface T2/T2+ 16
NN330	Columbus [®] RP gliding surface T3/T3+ 10
NN331	Columbus [®] RP gliding surface T3/T3+ 12
NN332	Columbus [®] RP gliding surface T3/T3+ 14
NN333	Columbus [®] RP gliding surface T3/T3+ 16
NN340	Columbus [®] RP gliding surface T4/T4+ 10
NN341	Columbus [®] RP gliding surface T4/T4+ 12
NN342	Columbus [®] RP gliding surface T4/T4+ 14
NN343	Columbus [®] RP gliding surface T4/T4+ 16
NN350	Columbus [®] RP gliding surface T5 10
NN351	Columbus [®] RP gliding surface T5 12
NN352	Columbus [®] RP gliding surface T5 14
NN353	Columbus [®] RP gliding surface T5 16

*

PE gliding surface PS Posterior Sta	abilised incl. fixation screw
-------------------------------------	-------------------------------

NN510	COLUMBUS PS gliding surface T1/T1+ 10
NN511	COLUMBUS PS gliding surface T1/T1+ 12
NN512	COLUMBUS PS gliding surface T1/T1+ 14
NN513	COLUMBUS PS gliding surface T1/T1+ 16
NN514	COLUMBUS PS gliding surface T1/T1+ 18
NN515	COLUMBUS PS gliding surface T1/T1+ 20
NN520	COLUMBUS PS gliding surface T2/T2+ 10
NN521	COLUMBUS PS gliding surface T2/T2+ 12
NN522	COLUMBUS PS gliding surface T2/T2+ 14
NN523	COLUMBUS PS gliding surface T2/T2+ 16
NN524	COLUMBUS PS gliding surface T2/T2+ 18
NN525	COLUMBUS PS gliding surface T2/T2+ 20
NN530	COLUMBUS PS gliding surface T3/T3+ 10
NN531	COLUMBUS PS gliding surface T3/T3+ 12
NN532	COLUMBUS PS gliding surface T3/T3+ 14
NN533	COLUMBUS PS gliding surface T3/T3+ 16
NN534	COLUMBUS PS gliding surface T3/T3+ 18
NN535	COLUMBUS PS gliding surface T3/T3+ 20
NN540	COLUMBUS PS gliding surface T4/T4+ 10
NN541	COLUMBUS PS gliding surface T4/T4+ 12
NN542	COLUMBUS PS gliding surface T4/T4+ 14
NN543	COLUMBUS PS gliding surface T4/T4+ 16
NN544	COLUMBUS PS gliding surface T4/T4+ 18
NN545	COLUMBUS PS gliding surface T4/T4+ 20
NN550	COLUMBUS PS gliding surface T5 10
NN551	COLUMBUS PS gliding surface T5 12
NN552	COLUMBUS PS gliding surface T5 14
NN553	COLUMBUS PS gliding surface T5 16
NN554	COLUMBUS PS gliding surface T5 18
NN555	COLUMBUS PS gliding surface T5 20

Columbus	Obturator screws	
NN261K	closing screw D 12	For plateau 1–3+
NN264K	closing screw D 14	For plateau 4-5

Columbus®	Extension stems	
NN262K	stem D 12 S	For plateau 1–3+
NN263K	stem D 12 L	For plateau 1–3+
NN265K	stem D 14 S	For plateau 4-5
NN266K	stem D 14 L	For plateau 4-5

Columbus®	Patella triple peg	
NN481	Patella triple peg P1	Ø27mmx7mm
NN482	Patella triple peg P2	Ø30mm x 8mm
NN483	Patella triple peg P3	Ø33mm x 9mm
NN484	Patella triple peg P4	Ø 36 mm x 10 mm

The complete set NE300 includes the basic instrumentation and the CR version. Supplementary sets are required for the RP and PS versions and for navigation as indicated below.

Columbus[®] complete set NE300

Individua	l set nos.	
NE201	Columbus [®] Universal Instrumentation 1	
NE202	Columbus [®] Universal Instrumentation 2	
NE203	Columbus® Tibia Preparation Instruments	
NE204	Columbus [®] Femur Preparation Instruments	
NE205	Columbus® Patella Preparation Instruments	
NE206	Columbus [®] Trial Femoral Prostheses	
NE208	Columbus [®] Trial Tibial Instruments CR/PS	
NE209	Columbus [®] Manual Instruments	
Suppleme	entary sets:	
NE296	Columbus [®] Trial Tibial Instruments RP	
NE207		

NE307	Columbus [®] Femoral Instruments PS
NE309	Columbus [®] Trial Tibial Instruments Deep Dish

Complete navigation set NP610

Individual	set nos.
NP600	Navigation instruments
NP602	Knee instruments for TKA 4.0

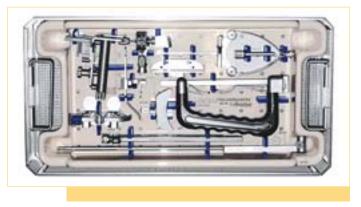
Complete Navigation Set NP611 (Passive technology)

Individual s	set nos.
NP168	Navigation instruments
NP602	Knee instruments for TKA 4.0

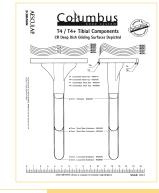
The complete set NE310 includes all the instrumentation for the CR and RP versions. Set NP610 is required additionally for navigation.

Please note: incompatible with PS-Version!

Columbus[®] complete set NE310


Individual	l set nos.
NE301	Columbus® Universal Instrumentation 1
NE302	Columbus [®] Universal Instrumentation 2
NE303	Columbus [®] Tibia Instruments
NE304	Columbus [®] Femur Instruments
NE305	Columbus [®] Patella Instruments
NE306	Columbus [®] Trial Femoral Prostheses
NE308	Columbus [®] Trial Tibial Prostheses
NE298	Columbus [®] Manual Instruments

Complete navigation set NP610


Individual set nos.		
NP600	Navigation Instruments	
NP602	Knee Instruments for TKA 4.0	

X-ray templates

NQ290	Scale 1,10:1	
NQ291	Scale 1,15:1	
NQ289	Axis planing	

The complete set NQ400 includes the basic instrumentation and the CR version. Supplementary sets are required for the RP and PS versions and for navigation as indicated below.

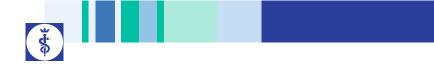
Columbus[®] StreamLined complete set NQ400

Central Sets for Columbus® StreamLined System			
NQ401	Columbus® StreamLined Universal Instruments		
NQ402	Columbus [®] StreamLined Tibial Instruments		
NQ403	Columbus® StreamLined Femoral Instruments		
NQ404	Columbus [®] StreamLined Tibial Trial Instruments		

Complementation Sets for Columbus® StreamLined System				
NQ406	Columbus [®] StreamLined Manual Instruments			
NQ407	Columbus [®] StreamLined Manual IM Alignment			
NQ408	Columbus [®] StreamLined Tibial Preparation TO & TO+			
NQ409	Columbus [®] StreamLined Tibial Extensions			
NQ410	Columbus [®] StreamLined Tibial Trials UC			
NQ411	Columbus [®] StreamLined Femur Preparation F1 & F2			
NQ412	Columbus [®] StreamLined Femur Preparation F7			
NQ413	Columbus [®] StreamLined Femur Preparation PS			
NQ414	Columbus [®] StreamLined Soft Tissue Management			
NE205	Columbus [®] StreamLined Patella			
NE296	Columbus [®] StreamLined Trial Tibial Instruments RP			

Complete Navigation Set NP611

Individual	set nos.
NP168	Navigation instruments
NP602	Knee instruments for TKA 4.0



Overview of	sawblades				
Thickness Length:	5: 1.27 mm 90 mm			19 mm	25 mm
Coupling Width	Aesculap	Aesculap Acculan 3 Ti	Stryker System 4+5 System 2000	Conmed/ Linvatec/Hall PowerPro Versipower plus	Synthes
				6.2	
13 mm	GE206R	GC236R	GE222R	GE220R	GE224R
19 mm	GE208R	GC238R			
25 mm	GE213R	GC246R	GE223R	GE221R	GE225R

AESCULAP[®]

BBRAUN SHARING EXPERTISE

Aesculap AG & Co. KG

Am Aesculap-Platz 78532 Tuttlingen Germany Phone +49 7461 95-0 Fax +49 7461 95-2600 www.aesculap.de

All rights reserved. Technical alterations are possible. This leaflet may be used for no other purposes than offering, buying and selling of our products. No part may be copied or reproduced in any form. In the case of misuse we retain the rights to recall our catalogues and pricelists and to take legal actions.